XML/XHTML/HTML

Vermont State University Peter Chapin

Markup Languages

- "Plain text" documents with special commands
 - PRO
 - Plays well with version control and other program development tools.
 - Easy to manipulate with scripts and third party programs.
 - WYSIWYG in the sense that no control codes are hidden.

CON

- Requires additional processing to create final output
- Can be hard to learn
- Not WYSIWYG in the sense that the document doesn't look like its final form.

Example: nroff

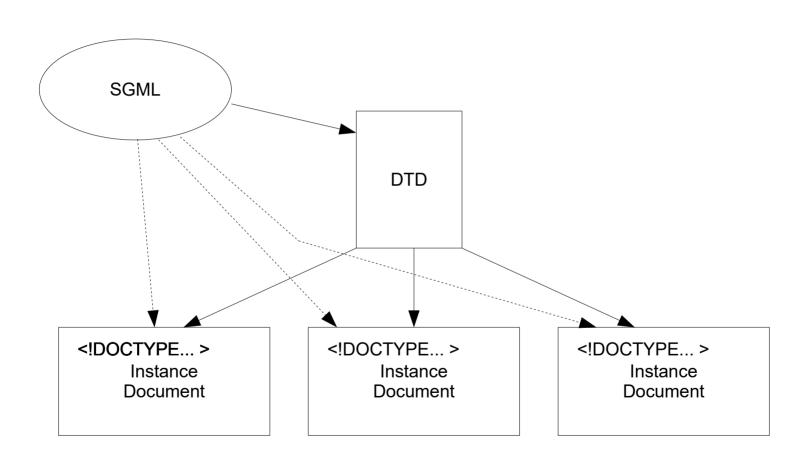
- Used for Unix manual pages...
 - .SH NAME
 watch \- watch for a user to log in or out of the system
 .SH SYNOPSIS
 .BR "watch " [-d " delay"] [-s|-q] [-f " logfile"] "
 username"
 - .SH DESCRIPTION
 - .B watch

is used to watch for the log in and log out activity of a particular user. It can record its findings to a file and/or display information to stdout.

Example: LaTeX

- Used extensively for technical literature...
 - begin{document}
 \title{CIS--3152 Lab \#4\\UDP and the Domain Name System}
 \author{\copyright\ Copyright 2009 by Peter Chapin}
 \date{Last Revised: January 31, 2009}
 \maketitle

\section*{Introduction}
In this lab you will explore UDP and the domain name system by writing a program that does DNS queries manually.
Although there are well known library functions for sending queries to a name server (\texttt{gethostbyname()} and \texttt{gethostbyaddr()}), you will not use those functions in this lab...


Who Cares About XML?

- XML is one of many competing structuring tools
 - PROs:
 - Standardized by the W3C (World Wide Web Consortium)
 - Strong typing (many schema languages to choose from)
 - Extensible (Create your own "vocabularies")
 - Many related standards: XInclude, XQuery, XSLT, XPath
 - CONs:
 - Verbose (i.e., high overhead)
 - Text (binary formats such as XDR, ASN.1 can be more compact)

In the Beginning: SGML

- Standard Generalized Markup Language
 - A markup language to define other markup languages (a "meta markup language").
 - ISO standard since the 1980s.
 - Powerful and expressive.
 - Complicated and difficult to implement fully.
 - How it works...
 - Use SGML to write a "document type definition" (DTD) for your markup language.
 - DTD describes the vocabulary of the markup.
 - SGML rules apply in the marked up documents too.

How It Works

"The Look"

All SGML documents have a similar look.

```
• <body>
     Mark up is in the form of
     tags surrounding blocks of
     material.
     Start tags
     can be decorated with attributes.
     My name is &author;. "Entities" are
     prefixed with &amp;.
</body>
```

The precise names used in the tags depends on the DTD.

HTML

- If "the look" seems familiar, I'm not surprised.
 - HTML 4 is an SGML application.
 - Meaning that HTML is described by an SGML document type definition.
 - http://www.w3.org/TR/REC-html40/sgml/dtd.html
 - SGML DTD's are a formal specification of what instance documents look like.
 - Documents either do or do not conform to this specification. There is no room for ambiguity.

Problem

- Many people wanted more from HTML
 - Mathematical formula
 - Music
 - Chemical formula
 - etc, etc...
- W3C didn't want to add everything to HTML
 - HTML would become huge!
- Instead we need a way to let people define their own mark up languages.

SGML?

- Why not SGML?
 - Already existed.
 - Already standard.
 - Already used by HTML
- BUT...
 - SGML processing programs are large and complex.
 - W3C wanted to allow for smaller (hand held?) systems with less powerful CPUs.
 - Needed something different.

XML

- eXtensible Markup Language
 - Essentially SGML "light"
 - Originally used the same sort of DTDs
 - Same sort of "look" in the instance documents.
 - Simplified semantics.
 - · Features removed
 - Other features given fewer options.
 - Easier to process.
 - XML is to SGML as Java is to C++.

XHTML v1.0

- ... a reformulation of HTML 4 as an XML "application."
 - Defined by an XML DTD instead of an SGML DTD
 - Looks very similar to the SGML DTD
 - Instance documents look very similar
 - More limitations because XML is more limited than SGML.
- Now users can define other XML markups as needed
 - Resulting markup languages are easier to handle than full SGML based languages.

Markup Languages to Know

- Many XML markup languages exist.
 - MathML
 - Allows you to describe and display mathematical formula.
 - SVG (Scalable Vector Graphics)
 - Allows you to describe vector graphics with an XML vocabulary.
 - XSL (XML Style Language)
 - Allows you to describe transformations from one XML vocabulary to another.
 - ODF (Open Document Format)
 - Office documents used by LibreOffice.
 - Many others... define your own!

XHTML v1.1

- Modularization!
 - Allows mixing XML vocabularies. Islands of "alien" markup can appear in an XHTML 1.1 document
 - MathML for equations
 - SVG for graphics (image files not needed!)
 - ChemML for chemical formula
 - Custom markup languages if a suitable CSS or XSLT style sheet provided
- No browsers implemented this (except for Amaya)

Elements vs Tags

- p level="1">This is text
 - The whole thing is called an "element."
 - The level="1"> is the "start tag."
 - The is the "end tag."
 - The level="1" is an attribute (with its value).
- Most of the time you talk about "elements."
 - Many people call them "tags" incorrectly.
 - It makes XML specialists cringe.

More Terminology

Consider the following

- The title element has text-only content.
- The book element has element-only content.
- The author element has mixed content.
- In general white space in text-only or mixed content is significant.
 - Each XML application decides what to do with it.

XML Restrictions

- As compared to SGML
 - All elements must have an end tag.
 - This is text.
 - The above is wrong: there is no tag.
 - SGML markups can define elements with optional end tags.
 - The above is okay in HTML4 because is optional there.
 - Element names are case sensitive.
 - This is text.
 - The above is also wrong: the name used in the end tag does not match that used in the start tag.
 - SGML markups can define case insensitive elements. HTML4 does this.

More XML Restrictions

- As compared with SGML
 - Attribute values must be quoted.
 - ...
 - The above is wrong because the attribute value "1" is not quoted.
 - SGML allows unquoted attributes if they are not ambiguous.
 - Attribute values must be present.
 - ...
 - The above is wrong because the attribute border does not have a value given.
 - · SGML allows this syntax in certain cases.
- Restrictions make processing easier.

Minimization End Tags

- Always requiring an end tag is a burden.
 -
</br>
 - HTML defines a br element for break. In XHTML the end tag must be present (in HTML it is optional).
 -

 - XML defines the above minimization form that combines both tags in one.
 - Strictly this is an XML feature and thus not allowed in HTML4 (SGML) documents.
 - Web browsers are forgiving about this.
- These restrictions and features apply to all XML markup languages.

"Well Formed" vs "Valid"

- Well Formed...
 - An XML document is well formed if it obeys the syntax requirements of XML.
- Valid...
 - An XML document is *valid* if it is well formed <u>and</u> if it obeys the requirements of a particular *schema*.
 - A schema defines what elements are allowed, their allowed attributes, and the relationships between elements. DTDs are a kind of schema.
- Which do we want?
 - It depends on the application.

Character Sets

- XML is a modern markup language.
 - Unicode is the default character set.
 - UTF-8 encoding is the default document encoding.
- Implications...
 - XML documents might contain "arbitrary" binary data (strictly speaking they are not ASCII files).
 - If the document is in Chinese it could be loaded with non-ASCII bytes.
 - Should be handled as such.
 - application/xml is the MIME type used, not text/xml.

Entities

- Certain characters can't be represented directly.
 - A literal < character
 - Must be represented as <
 - This is called a "character entity." Note the semicolon at the end.
 - A literal & character
 - Must be represented as & amp;
 - Can also encode arbitrary characters this way.
 - Character with Unicode code point U+ABCD can be represented as ꯍ
 - You could also just store the Unicode character directly in the file!
- XML DTDs can define other entities.

What Makes XML Cool?

- Generic way to described structured data.
 - Many documents contain structure. Plain text obscures this structure.
 - XML allows you to expose the structure so that programs can "see" and manipulate it.
- Good for...
 - Managing and processing complex documents
 - Storing and sharing data.
 - Dealing with structured information in general.

XHTML?

- Originally XML was designed to replace HTML via XHTML 1.0, 1.1, 2.0, etc.
- Capitalize on XML technologies during web development:
 - XQuery, XSL, XInclude, XPath, Modularization, etc.
- For various reasons, political, technical, and inertial, this idea did not materialize
 - XHTML 2.0 was abandoned before being finalized

What of XML?

- XHTML never got traction, but XML is useful:
- Database People
 - Structured markup provides a way of exchanging data reliably.
 - No loss of information
 - Potentially fully typed
 - Standardized reading/writing independent of databases
- Networking People
 - A standard format for exchanging information between potentially very different systems.
 - Essentially a very high level protocol

What of XML?

- Programmers
 - Useful for configuration files (although JSON has become more popular).
 - Maven
 - Ant
 - Hadoop
- Publishers
 - A machine manipulable format for text prior to publication
 - DocBook

HTML5

- Instead of XHTML, the web embraced HTML5
 - More compatible with existing sites using HTML 4
 - Easier (than with XHTML) to do simple things
 - The transformational styling language, XSL, is a Turing-complete functional language!
 - More flexible error handling
 - XHTML required renderers to completely fail on error. This avoids the problem of "tag soup" that proliferated in the HTML 4 days
 - HTML5 prescribes error handling. Unusual for a standard.

HTML5: From Whence Did It Come?

- HTML5 is based on:
 - HTML 4, the existing HTML standard at the time
 - XHTML 2.0, the next XHTML that was never finished
 - Additional features and ideas unique to HTML5
- Adds new capabilities relative to HTML 4
- Doesn't tap into the XML eco-system as XHTML does/did
- More flexible with prescribed error handling requirements

SGML? XML?

HTML 4 document type declaration

```
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
```

XHTML1.1 document type declaration

```
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
```

HTML5 DOCTYPE

HTML5 is based on neither SGML nor XML

```
<!DOCTYPE html>
```

- This is an invalid DOCTYPE declaration for HTML 4 or XHTML
 - Signals to browsers that HTML5 is being used
 - Similarity to the SGML-based or XML-based DOCTYPE declarations of HTML 4 and XHTML is "coincidence."

The Future

- HTML5 + CSS3 is the current standard on the web
- XHTML and associated XML techologies may vanish
 - ... but not yet. XHTML 1.0/1.1, XSL still supported by browsers, although that may change before much longer.
- Today "HTML" is HTML5 + various additions
 - HTML is now a "living standard" that evolves continuously without version numbers.
 - Maintained by the Web Hypertext Application Technology Working Group (WHATWG).