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Markup Languages

● “Plain text” documents with special commands
● PRO

– Plays well with version control and other program development tools.
– Easy to manipulate with scripts and third party programs.
– WYSIWYG in the sense that no control codes are hidden.

● CON
– Requires additional processing to create final output
– Can be hard to learn
– Not WYSIWYG in the sense that the document doesn't look like its final 

form.



  

Example: nroff

● Used for Unix manual pages...
● .SH NAME

watch \- watch for a user to log in or out of the system
.SH SYNOPSIS
.BR "watch " [-d " delay"] [-s|-q] [-f " logfile" ] " 
username"

.SH DESCRIPTION

.B watch
is used to watch for the log in and log out activity of a 
particular user. It can record its findings to a file 
and/or display information to stdout.



  

Example: LaTeX

● Used extensively for technical literature...
● \begin{document}

\title{CIS--3152 Lab \#4\\UDP and the Domain Name System}
\author{\copyright\ Copyright 2009 by Peter Chapin}
\date{Last Revised: January 31, 2009}
\maketitle

\section*{Introduction}
In this lab you will explore UDP and the domain name system 
by writing a program that does DNS queries manually. 
Although there are well known library functions for sending 
queries to a name server (\texttt{gethostbyname()} and \
texttt{gethostbyaddr()}), you will not use those functions
in this lab... 



  

Who Cares About XML?

● XML is one of many competing structuring tools
● PROs:

– Standardized by the W3C (World Wide Web Consortium)
– Strong typing (many schema languages to choose from)
– Extensible (Create your own “vocabularies”)
– Many related standards: XInclude, XQuery, XSLT, XPath

● CONs:
– Verbose (i.e., high overhead)
– Text (binary formats such as XDR, ASN.1 can be more compact)



  

In the Beginning: SGML

● Standard Generalized Markup Language
● A markup language to define other markup languages (a “meta 

markup language”).
– ISO standard since the 1980s.
– Powerful and expressive.
– Complicated and difficult to implement fully.

● How it works...
– Use SGML to write a “document type definition” (DTD) for your markup 

language.
– DTD describes the vocabulary of the markup.
– SGML rules apply in the marked up documents too.



  

How It Works

SGML
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<!DOCTYPE... >
Instance
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<!DOCTYPE... ><!DOCTYPE... > <!DOCTYPE... >



  

“The Look”

● All SGML documents have a similar look.
● <body>

  <p>Mark up is in the form of
  tags surrounding blocks of
  material.</p>

  <p nature=”important”>Start tags
  can be decorated with attributes.
  My name is &author;. “Entities” are
  prefixed with &amp;.</p>
</body>

● The precise names used in the tags depends on the DTD.



  

HTML

● If “the look” seems familiar, I'm not surprised.
● HTML 4 is an SGML application.

– Meaning that HTML is described by an SGML document type definition.
– http://www.w3.org/TR/REC-html40/sgml/dtd.html

● SGML DTD's are a formal specification of what instance documents 
look like.

– Documents either do or do not conform to this specification. There is no 
room for ambiguity.

http://www.w3.org/TR/REC-html40/sgml/dtd.html


  

Problem

● Many people wanted more from HTML
● Mathematical formula
● Music
● Chemical formula
● etc, etc...

● W3C didn't want to add everything to HTML
● HTML would become huge!

● Instead we need a way to let people define their own mark up 
languages.



  

SGML?

● Why not SGML?
● Already existed.
● Already standard.
● Already used by HTML

● BUT...
● SGML processing programs are large and complex.
● W3C wanted to allow for smaller (hand held?) systems with less 

powerful CPUs.
● Needed something different.



  

XML

● eXtensible Markup Language
● Essentially SGML “light”

– Originally used the same sort of DTDs
– Same sort of “look” in the instance documents.
– Simplified semantics.

● Features removed
● Other features given fewer options.

– Easier to process.
● XML is to SGML as Java is to C++.



  

XHTML v1.0

● ... a reformulation of HTML 4 as an XML “application.”
● Defined by an XML DTD instead of an SGML DTD

– Looks very similar to the SGML DTD
● Instance documents look very similar

– More limitations because XML is more limited than SGML.

● Now users can define other XML markups as needed
● Resulting markup languages are easier to handle than full SGML 

based languages.



  

Markup Languages to Know
● Many XML markup languages exist.

● MathML
– Allows you to describe and display mathematical formula.

● SVG (Scalable Vector Graphics)
– Allows you to describe vector graphics with an XML vocabulary.

● XSL (XML Style Language)
– Allows you to describe transformations from one XML vocabulary to another.

● ODF (Open Document Format)
– Office documents used by LibreOffice.

● Many others... define your own!



  

XHTML v1.1

● Modularization!
● Allows mixing XML vocabularies. Islands of “alien” markup can 

appear in an XHTML 1.1 document
● MathML for equations
● SVG for graphics (image files not needed!)
● ChemML for chemical formula
● Custom markup languages if a suitable CSS or XSLT style sheet 

provided
● No browsers implemented this (except for Amaya)

https://www.w3.org/Amaya/


  

Elements vs Tags

● <p level=”1”>This is text</p>
● The whole thing is called an “element.”
● The <p level=”1”> is the “start tag.”

● The </p> is the “end tag.”

● The level=”1” is an attribute (with its value).

● Most of the time you talk about “elements.”
● Many people call them “tags” incorrectly.

– It makes XML specialists cringe.



  

More Terminology

● Consider the following
● <book>

  <title>XML is cool</title>
  <author>Jill
          <bold>Jones</bold></author>
</book>

– The title element has text-only content.

– The book element has element-only content.

– The author element has mixed content.

● In general white space in text-only or mixed content is significant.
– Each XML application decides what to do with it.



  

XML Restrictions

● As compared to SGML
● All elements must have an end tag.

– <p>This is text.
● The above is wrong: there is no </p> tag.
● SGML markups can define elements with optional end tags.
● The above is okay in HTML4 because </p> is optional there.

● Element names are case sensitive.
– <p>This is text.</P>

● The above is also wrong: the name used in the end tag does not match that used in 
the start tag.

● SGML markups can define case insensitive elements. HTML4 does this.



  

More XML Restrictions

● As compared with SGML
● Attribute values must be quoted.

– <table border=1> ... </table>
● The above is wrong because the attribute value “1” is not quoted.
● SGML allows unquoted attributes if they are not ambiguous.

● Attribute values must be present.
– <table border> ... </table>

● The above is wrong because the attribute border does not have a value given.
● SGML allows this syntax in certain cases.

● Restrictions make processing easier.



  

Minimization End Tags

● Always requiring an end tag is a burden.
● <br></br>

– HTML defines a br element for break. In XHTML the end tag must be present 
(in HTML it is optional).

● <br/>
– XML defines the above minimization form that combines both tags in one.
– Strictly this is an XML feature and thus not allowed in HTML4 (SGML) 

documents.
– Web browsers are forgiving about this.

● These restrictions and features apply to all XML markup 
languages.



  

“Well Formed” vs “Valid”

● Well Formed...
● An XML document is well formed if it obeys the syntax requirements 

of XML.
● Valid...

● An XML document is valid if it is well formed and if it obeys the 
requirements of a particular schema.

– A schema defines what elements are allowed, their allowed attributes, and 
the relationships between elements. DTDs are a kind of schema.

● Which do we want?
● It depends on the application.



  

Character Sets

● XML is a modern markup language.
● Unicode is the default character set.
● UTF-8 encoding is the default document encoding.

● Implications...
● XML documents might contain “arbitrary” binary data (strictly 

speaking they are not ASCII files).
– If the document is in Chinese it could be loaded with non-ASCII bytes.

● Should be handled as such.
– application/xml is the MIME type used, not text/xml.



  

Entities

● Certain characters can't be represented directly.
● A literal < character

– Must be represented as &lt;
● This is called a “character entity.” Note the semicolon at the end.

● A literal & character
– Must be represented as &amp;

● Can also encode arbitrary characters this way.
– Character with Unicode code point U+ABCD can be represented as 

&#xABCD;
– You could also just store the Unicode character directly in the file!

● XML DTDs can define other entities.



  

What Makes XML Cool?

● Generic way to described structured data.
● Many documents contain structure. Plain text obscures this structure.
● XML allows you to expose the structure so that programs can “see” 

and manipulate it.
● Good for...

● Managing and processing complex documents
● Storing and sharing data.
● Dealing with structured information in general.



  

XHTML?

● Originally XML was designed to replace HTML via XHTML 1.0, 
1.1, 2.0, etc.

● Capitalize on XML technologies during web development:
● XQuery, XSL, XInclude, XPath, Modularization, etc.

● For various reasons, political, technical, and inertial, this idea 
did not materialize

● XHTML 2.0 was abandoned before being finalized



  

What of XML?

● XHTML never got traction, but XML is useful:
● Database People

● Structured markup provides a way of exchanging data reliably.
– No loss of information
– Potentially fully typed
– Standardized reading/writing independent of databases

● Networking People
● A standard format for exchanging information between potentially 

very different systems.
– Essentially a very high level protocol



  

What of XML?

● Programmers
● Useful for configuration files (although JSON has become more 

popular).
– Maven
– Ant
– Hadoop

● Publishers
● A machine manipulable format for text prior to publication

– DocBook



  

HTML5

● Instead of XHTML, the web embraced HTML5
● More compatible with existing sites using HTML 4
● Easier (than with XHTML) to do simple things

– The transformational styling language, XSL, is a Turing-complete functional 
language!

● More flexible error handling
– XHTML required renderers to completely fail on error. This avoids the 

problem of “tag soup” that proliferated in the HTML 4 days
– HTML5 prescribes error handling. Unusual for a standard.



  

HTML5: From Whence Did It Come?

● HTML5 is based on:
● HTML 4, the existing HTML standard at the time
● XHTML 2.0, the next XHTML that was never finished
● Additional features and ideas unique to HTML5

● Adds new capabilities relative to HTML 4
● Doesn’t tap into the XML eco-system as XHTML does/did
● More flexible with prescribed error handling requirements



  

SGML? XML?

● HTML 4 document type declaration
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 
"http://www.w3.org/TR/html4/strict.dtd">

● XHTML1.1 document type declaration
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" 
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">



  

HTML5 DOCTYPE

● HTML5 is based on neither SGML nor XML
<!DOCTYPE html>

● This is an invalid DOCTYPE declaration for HTML 4 or XHTML
● Signals to browsers that HTML5 is being used
● Similarity to the SGML-based or XML-based DOCTYPE declarations 

of HTML 4 and XHTML is “coincidence.”



  

The Future

● HTML5 + CSS3 is the current standard on the web
● XHTML and associated XML techologies may vanish

● … but not yet. XHTML 1.0/1.1, XSL still supported by browsers, 
although that may change before much longer.

● Today “HTML” is HTML5 + various additions
● HTML is now a “living standard” that evolves continuously without 

version numbers.
● Maintained by the Web Hypertext Application Technology Working 

Group (WHATWG).

https://html.spec.whatwg.org/multipage/
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