

XML/XHTML/HTML

Vermont State University
Peter Chapin

Markup Languages

● “Plain text” documents with special commands
● PRO

– Plays well with version control and other program development tools.
– Easy to manipulate with scripts and third party programs.
– WYSIWYG in the sense that no control codes are hidden.

● CON
– Requires additional processing to create final output
– Can be hard to learn
– Not WYSIWYG in the sense that the document doesn't look like its final

form.

Example: nroff

● Used for Unix manual pages...
● .SH NAME

watch \- watch for a user to log in or out of the system
.SH SYNOPSIS
.BR "watch " [-d " delay"] [-s|-q] [-f " logfile"] "
username"

.SH DESCRIPTION

.B watch
is used to watch for the log in and log out activity of a
particular user. It can record its findings to a file
and/or display information to stdout.

Example: LaTeX

● Used extensively for technical literature...
● \begin{document}

\title{CIS--3152 Lab \#4\\UDP and the Domain Name System}
\author{\copyright\ Copyright 2009 by Peter Chapin}
\date{Last Revised: January 31, 2009}
\maketitle

\section*{Introduction}
In this lab you will explore UDP and the domain name system
by writing a program that does DNS queries manually.
Although there are well known library functions for sending
queries to a name server (\texttt{gethostbyname()} and \
texttt{gethostbyaddr()}), you will not use those functions
in this lab...

Who Cares About XML?

● XML is one of many competing structuring tools
● PROs:

– Standardized by the W3C (World Wide Web Consortium)
– Strong typing (many schema languages to choose from)
– Extensible (Create your own “vocabularies”)
– Many related standards: XInclude, XQuery, XSLT, XPath

● CONs:
– Verbose (i.e., high overhead)
– Text (binary formats such as XDR, ASN.1 can be more compact)

In the Beginning: SGML

● Standard Generalized Markup Language
● A markup language to define other markup languages (a “meta

markup language”).
– ISO standard since the 1980s.
– Powerful and expressive.
– Complicated and difficult to implement fully.

● How it works...
– Use SGML to write a “document type definition” (DTD) for your markup

language.
– DTD describes the vocabulary of the markup.
– SGML rules apply in the marked up documents too.

How It Works

SGML

DTD

Instance
Document

<!DOCTYPE... >
Instance

Document

<!DOCTYPE... >
Instance

Document

<!DOCTYPE... ><!DOCTYPE... > <!DOCTYPE... >

“The Look”

● All SGML documents have a similar look.
● <body>

 <p>Mark up is in the form of
 tags surrounding blocks of
 material.</p>

 <p nature=”important”>Start tags
 can be decorated with attributes.
 My name is &author;. “Entities” are
 prefixed with &.</p>
</body>

● The precise names used in the tags depends on the DTD.

HTML

● If “the look” seems familiar, I'm not surprised.
● HTML 4 is an SGML application.

– Meaning that HTML is described by an SGML document type definition.
– http://www.w3.org/TR/REC-html40/sgml/dtd.html

● SGML DTD's are a formal specification of what instance documents
look like.

– Documents either do or do not conform to this specification. There is no
room for ambiguity.

http://www.w3.org/TR/REC-html40/sgml/dtd.html

Problem

● Many people wanted more from HTML
● Mathematical formula
● Music
● Chemical formula
● etc, etc...

● W3C didn't want to add everything to HTML
● HTML would become huge!

● Instead we need a way to let people define their own mark up
languages.

SGML?

● Why not SGML?
● Already existed.
● Already standard.
● Already used by HTML

● BUT...
● SGML processing programs are large and complex.
● W3C wanted to allow for smaller (hand held?) systems with less

powerful CPUs.
● Needed something different.

XML

● eXtensible Markup Language
● Essentially SGML “light”

– Originally used the same sort of DTDs
– Same sort of “look” in the instance documents.
– Simplified semantics.

● Features removed
● Other features given fewer options.

– Easier to process.
● XML is to SGML as Java is to C++.

XHTML v1.0

● ... a reformulation of HTML 4 as an XML “application.”
● Defined by an XML DTD instead of an SGML DTD

– Looks very similar to the SGML DTD
● Instance documents look very similar

– More limitations because XML is more limited than SGML.

● Now users can define other XML markups as needed
● Resulting markup languages are easier to handle than full SGML

based languages.

Markup Languages to Know
● Many XML markup languages exist.

● MathML
– Allows you to describe and display mathematical formula.

● SVG (Scalable Vector Graphics)
– Allows you to describe vector graphics with an XML vocabulary.

● XSL (XML Style Language)
– Allows you to describe transformations from one XML vocabulary to another.

● ODF (Open Document Format)
– Office documents used by LibreOffice.

● Many others... define your own!

XHTML v1.1

● Modularization!
● Allows mixing XML vocabularies. Islands of “alien” markup can

appear in an XHTML 1.1 document
● MathML for equations
● SVG for graphics (image files not needed!)
● ChemML for chemical formula
● Custom markup languages if a suitable CSS or XSLT style sheet

provided
● No browsers implemented this (except for Amaya)

https://www.w3.org/Amaya/

Elements vs Tags

● <p level=”1”>This is text</p>
● The whole thing is called an “element.”
● The <p level=”1”> is the “start tag.”

● The </p> is the “end tag.”

● The level=”1” is an attribute (with its value).

● Most of the time you talk about “elements.”
● Many people call them “tags” incorrectly.

– It makes XML specialists cringe.

More Terminology

● Consider the following
● <book>

 <title>XML is cool</title>
 <author>Jill
 <bold>Jones</bold></author>
</book>

– The title element has text-only content.

– The book element has element-only content.

– The author element has mixed content.

● In general white space in text-only or mixed content is significant.
– Each XML application decides what to do with it.

XML Restrictions

● As compared to SGML
● All elements must have an end tag.

– <p>This is text.
● The above is wrong: there is no </p> tag.
● SGML markups can define elements with optional end tags.
● The above is okay in HTML4 because </p> is optional there.

● Element names are case sensitive.
– <p>This is text.</P>

● The above is also wrong: the name used in the end tag does not match that used in
the start tag.

● SGML markups can define case insensitive elements. HTML4 does this.

More XML Restrictions

● As compared with SGML
● Attribute values must be quoted.

– <table border=1> ... </table>
● The above is wrong because the attribute value “1” is not quoted.
● SGML allows unquoted attributes if they are not ambiguous.

● Attribute values must be present.
– <table border> ... </table>

● The above is wrong because the attribute border does not have a value given.
● SGML allows this syntax in certain cases.

● Restrictions make processing easier.

Minimization End Tags

● Always requiring an end tag is a burden.
●
</br>

– HTML defines a br element for break. In XHTML the end tag must be present
(in HTML it is optional).

●

– XML defines the above minimization form that combines both tags in one.
– Strictly this is an XML feature and thus not allowed in HTML4 (SGML)

documents.
– Web browsers are forgiving about this.

● These restrictions and features apply to all XML markup
languages.

“Well Formed” vs “Valid”

● Well Formed...
● An XML document is well formed if it obeys the syntax requirements

of XML.
● Valid...

● An XML document is valid if it is well formed and if it obeys the
requirements of a particular schema.

– A schema defines what elements are allowed, their allowed attributes, and
the relationships between elements. DTDs are a kind of schema.

● Which do we want?
● It depends on the application.

Character Sets

● XML is a modern markup language.
● Unicode is the default character set.
● UTF-8 encoding is the default document encoding.

● Implications...
● XML documents might contain “arbitrary” binary data (strictly

speaking they are not ASCII files).
– If the document is in Chinese it could be loaded with non-ASCII bytes.

● Should be handled as such.
– application/xml is the MIME type used, not text/xml.

Entities

● Certain characters can't be represented directly.
● A literal < character

– Must be represented as <
● This is called a “character entity.” Note the semicolon at the end.

● A literal & character
– Must be represented as &

● Can also encode arbitrary characters this way.
– Character with Unicode code point U+ABCD can be represented as

ꯍ
– You could also just store the Unicode character directly in the file!

● XML DTDs can define other entities.

What Makes XML Cool?

● Generic way to described structured data.
● Many documents contain structure. Plain text obscures this structure.
● XML allows you to expose the structure so that programs can “see”

and manipulate it.
● Good for...

● Managing and processing complex documents
● Storing and sharing data.
● Dealing with structured information in general.

XHTML?

● Originally XML was designed to replace HTML via XHTML 1.0,
1.1, 2.0, etc.

● Capitalize on XML technologies during web development:
● XQuery, XSL, XInclude, XPath, Modularization, etc.

● For various reasons, political, technical, and inertial, this idea
did not materialize

● XHTML 2.0 was abandoned before being finalized

What of XML?

● XHTML never got traction, but XML is useful:
● Database People

● Structured markup provides a way of exchanging data reliably.
– No loss of information
– Potentially fully typed
– Standardized reading/writing independent of databases

● Networking People
● A standard format for exchanging information between potentially

very different systems.
– Essentially a very high level protocol

What of XML?

● Programmers
● Useful for configuration files (although JSON has become more

popular).
– Maven
– Ant
– Hadoop

● Publishers
● A machine manipulable format for text prior to publication

– DocBook

HTML5

● Instead of XHTML, the web embraced HTML5
● More compatible with existing sites using HTML 4
● Easier (than with XHTML) to do simple things

– The transformational styling language, XSL, is a Turing-complete functional
language!

● More flexible error handling
– XHTML required renderers to completely fail on error. This avoids the

problem of “tag soup” that proliferated in the HTML 4 days
– HTML5 prescribes error handling. Unusual for a standard.

HTML5: From Whence Did It Come?

● HTML5 is based on:
● HTML 4, the existing HTML standard at the time
● XHTML 2.0, the next XHTML that was never finished
● Additional features and ideas unique to HTML5

● Adds new capabilities relative to HTML 4
● Doesn’t tap into the XML eco-system as XHTML does/did
● More flexible with prescribed error handling requirements

SGML? XML?

● HTML 4 document type declaration
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

● XHTML1.1 document type declaration
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

HTML5 DOCTYPE

● HTML5 is based on neither SGML nor XML
<!DOCTYPE html>

● This is an invalid DOCTYPE declaration for HTML 4 or XHTML
● Signals to browsers that HTML5 is being used
● Similarity to the SGML-based or XML-based DOCTYPE declarations

of HTML 4 and XHTML is “coincidence.”

The Future

● HTML5 + CSS3 is the current standard on the web
● XHTML and associated XML techologies may vanish

● … but not yet. XHTML 1.0/1.1, XSL still supported by browsers,
although that may change before much longer.

● Today “HTML” is HTML5 + various additions
● HTML is now a “living standard” that evolves continuously without

version numbers.
● Maintained by the Web Hypertext Application Technology Working

Group (WHATWG).

https://html.spec.whatwg.org/multipage/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

