MIME

Vermont Technical College Peter C. Chapin

Limitations of RFC-5322

- RFC-5322 describes a very limited format.
 - Only a simple text body is allowed.
 - No support for "attachments."
 - No support for structured text
 - Complex formatted text (like HTML) rendered "as is."
 - No support for non-ASCII character sets
 - SMTP limitation... only ASCII allowed by SMTP.
 - No support for binary data.
 - SMTP limitation... see above!

MIME

- <u>Multipurpose Internet Mail Extensions</u>
 - MIME addresses all of these problems.
 - Defines a way to structure message bodies.
 - To provide for complex formatting (HTML, etc)
 - To provide for attachments
 - Defines a way to encode binary data as ASCII text
 - To provide for non-ASCII character sets.
 - To provide for arbitrary binary data.
- MIME RFCs
 - RFC-2045, 2046, 2047, 2048, 2049
 - And a host of others.

MIME Types

- Each message component has a "type."
 - Top level type categories include
 - Basic types: text, image, audio, video, application
 - Composite types: multipart, message
 - Each category contains specific subtypes.
 - text/plain, text/html, text/enriched
 - image/jpeg, image/gif, image/png
 - application/vnd.ms-excel, application/octet-stream
 - Mail programs can use type information to improve message handling.
 - Images displayed as images, sounds played, etc.

MIME-Version

- MIME enabled messages must say so.
 - New header fields.

```
- MIME-Version: 1.0
Content-Type: text/plain;
charset="us-ascii"
Content-Transfer-Encoding: 7bit
```

- MIME-Version field is required.
- Content-Type field specifies the message type.
 - text/plain is the default. ASCII characters are default.
- Content-Transfer-Encoding specifies how the content is encoded.
 - 7bit (meaning US-ASCII is good enough) is the default.

HTML Mail

- Messages can now be in formatted text.
 - HTML is just one possbility

```
- MIME-Version: 1.0
   Content-Type: text/html
   Content-Transfer-Encoding: 7bit
   <html>
        <body>
        Hello! This is email
        </body>
        </html>
```

 Receiving mail program renders the HTML instead of displaying the raw text.

What About Binary Data?

- There are two primary encodings.
 - Quoted Printable Encoding
 - Encodes most ASCII characters as themselves
 - Non-ASCII characters require three bytes.
 - Inefficient if there are many such characters.
 - Good for "almost" ASCII text.
 - Result still (mostly) readable without decoding.
 - Base 64 Encoding
 - Encodes all byte values into 64 possible ASCII values.
 - Resulting text totally unreadable without decoding.
 - Good for true binary data.

Quoted Printable Encoding

- Characteristics...
 - Any byte can be represented as =XY where X and Y are hex digits (00 to FF using uppercase letters).
 - Example: the space can be represented as =20
 - Most printable ASCII can represent itself (one notable exception is the '=' character, which must be encoded as '=3D').
 - White space can represent itself, but not at the end of a line.
 - Line breaks (CF/LF) must be preserved.

Québec

- The string "Québec"...
 - The 'é' has code point U+00E9
 - UTF-8 (all values are hex)
 - Byte values: 51 75 <u>C3 A9</u> 62 65 63
 - In Quoted printable: "Qu=C3=A9bec"
 - UTF-16BE
 - Byte values: 00 51 00 75 <u>00 E9</u> 00 62 00 65 00 63
 - In Quoted printable: "=00Q=00e=00=E9=00b=00e=00c"
 - Quoted printable can encode arbitrary binary data.
 - But the size increases by up to 3x.

Soft Line Breaks

- Quoted printable encoding allows long lines to be wrapped.
 - Lines ending with a bare '=' are continued.

```
- This is a long =
  line that has been =
  wrapped on multiple =
  lines.
```

- Mail programs sometimes put entire paragraphs in one line.
 - So receiving program can wrap them in its window optimally.
 - Yet SHOULD prepare message with lines no longer than
 78 characters (leaving 2 characters for CR/LF).

Increasing Reliability

- Sending mail can be tricky.
 - Some mail gateways or character set translations have problems with certain characters.
 - Recommendation:
 - Use quoted printable encoding to encode ("quote") the characters: ! "#@ [\]^`{|}
 - This reduces the chances of them being corrupted on route to the destination.
 - Note that the above characters can, technically, stand for themselves. This is only a recommendation.

Base64 Encoding

- Starts with raw binary data.
 - Break data into groups of three bytes (24 bits).
 - Divide group into four sections of 6 bits each.

8 bits	8	8 bits		8 bits	
6 bits	6 bits	6 bits		6 bits	

Base64 Alphabet

- 6 bits implies 2^6 = 64 possibilities.
 - Assign one "safe" character to each of those values.

```
    char code_table[] =
        "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
        "abcdefghijklmnopqrstuvwxyz"
        "0123456789+/";
```

- The three original bytes become four characters from the above alphabet.
- Notice that zero maps to 'A'. Thus a file of zeros becomes "AAAAAAAAA..."

Padding

- What if input not a multiple of three in size?
 - Pad last group of three bytes with zero bits.
 - Use '=' characters as placeholders in output.
 - That way receiver knows those bytes aren't really there.
 - Example (padding show underlined):
 - Input bytes: 0x3C 0xA2
 - Binary: 0011,1100 1010,0010 <u>0000,0000</u>
 - Regrouped binary: 001111 001010 0010<u>00 000000</u>
 - 001111 corresponds to "P"
 - 001010 corresponds to "K"
 - 001000 corresponds to "I"
 - Encoded result: PKI=

Base64 vs Quoted Printable

- Base64...
 - Much more efficient use of space.
 - 3 bytes becomes 4 bytes. Encoded size 133% input size.
 - With quoted printable, encoded size could be as much as 300% input size!
 - Binary data (image data, etc) not readable anyway.
- Quoted printable...
 - Retains readability if most characters are ASCII

Multipart Messages

- Content-Type: multipart/mixed
 - Multipart messages contain multiple parts. The "mixed" subtype is used for attachments.

```
    Content-Type: multipart/mixed;

                boundary="fizzle"
  --fizzle
  Content-Type: text/plain
  Content-Transfer-Encoding: 7bit
  The attached file illustrates...
  --fizzle
  Content-Type: image/jpeg
  Content-Transfer-Encoding: base64
  Ay33bkoSklw/jQLhe8wlclzzA...
  --fizzle--
```

Multipart Structure

- The body is broken into "parts."
 - Each part has it's own Content-Type and Content-Transfer-Encoding "subheader."
 - Body of each part separated from the subheader with a blank line.
 - Parts separated by a "boundary line" declared in the main body's Content-Type field.
 - Section before the first part is empty.
 - Used for messages seen by non-MIME mail programs: "If you can see this, get a real mail program."
 - Section after last part is empty.

Nested Multipart Messages

- The Content-Type of a part can also be multipart/mixed.
 - Content-Type: multipart/mixed; boundary="fizzle1" --fizzle1 Content-Type: text/plain; charset="utf8" Content-Transfer-Encoding: quoted-printable blah... --fizzle1 Content-Type: multipart/mixed; boundary="fizzle2" --fizzle2 ... etc ... --fizzle2... etc ... --fizzle2----fizzle1--

More Nested Fun

- Nesting depth is arbitrary.
 - Nested parts can contain more nested parts.
- Number of parts is arbitrary.
 - A multipart/mixed message can have dozens of parts.
 - All different mime types!
 - Some parts might be nested multiparts. Some might be images, HTML, video, etc.
- MIME messages are...
 - A complex tree of parts.
 - Very complex messages can be confusing!

Multipart/Alternative

- Content-Type: multipart/alternative.
 - Structured just like multipart/mixed.
 - Each part intended to be a different representation of the same content.
 - Mail program displays the *last* part it knows how to handle.
 - Part 1: text/plain ("Let's do lunch!")
 - Part 2: text/html ("Let's do lunch!" in fancy fonts)
 - Part 3: image/jpeg (Picture of me holding a sign that says "Let's do lunch!")
 - Part 4: video/mpeg (Video of me doing my "Let's do lunch!" dance)

Handling of Alternatives

- Receiving mail program...
 - IF it can display videos it will show the dance.
 - ELSE IF it can display images it will show the picture.
 - ELSE IF it can display HTML email it will show the fancy fonts.
 - ELSE it shows the plain text.
- Common...
 - Many mail programs send text/plain and text/html alternatives.
 - Although HTML mail is so common now, the text/plain alternative is often dropped.

Content-Type: message/rfc822

- A MIME type for email messages.
 - Used when nesting messages inside of other messages.
 - A multipart/mixed message might contain a part with type message/rfc822.
 - Such parts contain entire email messages... complete with all headers and internal structure
 - Can be multipart messages themselves!
 - Used (sometimes) when forwarding email.
 - Used (sometimes) by mailing lists to create digests.
 - Smart mail programs allow you to reply to the message parts independently. (Pine allows this).

Formal Specification

- MIME is precisely specified.
 - Allows mail programs to reliably perform transformations on email.
 - Break digests into individual messages.
 - Add/remove attachments from messages without corrupting the primary body.
 - Insert/remote/rearrange message alternatives.
 - Perform character set transformations (for example, switching ISO-8859-1 to UTF8)
 - BUT...
 - Digitally signed mail (there's a MIME type for that!) can't be modified without invalidating the signature.
 - Smart mail systems check the MIME type!

Demonstration

Show some MIME messages