S. Ruegsegger

File Permissions

CIS 2230 Linux System Administration
Lecture 13

Steve Ruegsegger

2016 C1S2230 Linux Sys Admin 1

S. Ruegsegger

Review — users

e What is the su command used for?
e What is the uid?
e Whatis uid 0?

 What command allows you to run as root for 1
command?

 How do you get a root shell prompt using sudo?
* What is the command to change your password?

e What makes a user “a user”?

 What are the 3 things that happens when you make a
new user?

 When should you give your pw to a sys admin to help
you out?

CIS2230 Linux Sys Admin

S. Ruegsegger

File permission introduction

* An advantage of Linux = designed for multiple users
from the start

* This provided security for the OS and the users.

* The users are protected from each other
 The OS is protected from all users

* The OS has built-in file permissions and will only
allow actions on files when permitted.

* 3 Actions: read, write, execute

* 3 ids for those actions: user, group, other (a.k.a.
everyone or world)

e “3 groups of 3”
e Per id, the actions are combined into “modes”

CIS2230 Linux Sys Admin

S. Ruegsegger

Permission bits for Files

* Three types of permissions on files, each denoted by a letter
* A permission represents an action that can be done on the file:

Permission
(mode) Letter Description

Read r Permission to read the data stored in the file

Write w Permission to append data to the file, to truncate
the file, or to overwrite existing data

Execute X Permission to attempt to execute the contents of the

file as a program

* Occasionally referred to as ‘permission bits’

* Note that for scripts, you need both execute permission and read
permission.

CIS2230 Linux Sys Admin

S. Ruegsegger

Permission bits for Directories

* The r, w, and x permissions also have a meaning for directories

 The meanings for directories are slightly different:

Permission Letter Description
Read r Permission to get a listing of the directory
Write w Permission to create, delete, or rename files (or

subdirectories) within the directory
Execute x Permission to change to the directory, or to use the

directory as an intermediate part of a path to a file

* The difference between read and execute on directories is
specious — having one but not the other is almost never what you
want (except when it is).

CIS2230 Linux Sys Admin

S. Ruegsegger

3 groups of 3

2016

* These bits are in groups of 3

A rwx set for user, group, world
e 3 groups x 3 bit =9 bits (duh)

* The ls -l command allows you to look at the permissions:

$ 1s -la _ _

total 1284 uid gid
drwxr-xr-x 2 steve steve
(:}wxr—xr—x 31 steve steve
di 7 - rw-——————— 1 steve steve
Ir —Irw——————— 1 steve steve
—rw——————-— 1 steve steve
-rwtr—-qr—--| 1 steve steve
Ssteve

“Pw-— ——fr— 1 steve

User rwx permissions

4096
4096
16005
19938
224268
99982
97421

Other rwx permissions

Group rwx permissions

CIS2230 Linux Sys Admin

2011-09-15
2011-09-15
2011-09-04
2011-09-04
2011-09-04
2011-09-04
2011-09-04

21
21

33
33
33
11
11

:52 .

:52 ..
15:
15:
15:
16:
16:

who.txt

w.txt
psef.txt
pidkill.ae.gz
pidkill.ad.gz

What does S Is -n do?

S. Ruegsegger

“modes” from permission bits

* User can do everything, everyone can only read
—-rwxr—-r—— 1 steve steve 1234 2011-09-04 16:11 foo

* Everyone can do everything
—-rTWXrwxXxrwx 1 steve steve 1234 2011-09-04 1o6:11 foo

* Only reading for everyone
—-r——-r——-r—— 1 steve steve 1234 2011-09-04 16:11 foo

* Only the user can read & write
—rW——————=— 1 steve steve 1234 2011-09-04 16:11 foo

CIS2230 Linux Sys Admin

.bar

.bar

.bar

.bar

S. Ruegsegger

Change modes: chmod

* The chmod command changes the permissions of a
file or directory

* A file’s permissions may be changed only by its
owner or by the superuser

 chmod takes an argument describing the new
permission mode

* There are two ways to define the new mode
e Symbolic: <id>[+-=]<action>
e Octal: 755

CIS2230 Linux Sys Admin

S. Ruegsegger

Symbolic chmod

* Symbolic format — set of 3 symbols:
[ugoa] [+=—-] [rwxXst]

* First letter indicates who to set permissions for:
e u for the file’s owner
» g for the group owner
» o for other users (not in first 2, a.k.a. world/everyone)
e a forall 3sets

e Second char is an action

* = se)ts permissions for files (remove any other bits for that
user

* + adds permissions to those already set,
* - removes permissions

* Third letters indicate which of the r, w, x permissions to
set

e Usuallyr, rw, rwx, or rx

CIS2230 Linux Sys Admin

S. Ruegsegger

Symbolic chmod

e Add execute for me
S chmod u+x backup.sh

* Add read and write for everyone
S chmod a+rw labl.doc

* Only | can read and write (everything else is off)
S chmod u=rw,og= labl.doc

* Remove execute from group and world
S chmod og-rx backup.sh

* Add read and write to group, but only read to world
S chmod g+rx,o+r labl.doc

CIS2230 Linux Sys Admin

S. Ruegsegger

Changing the Permissions recursively

A common requirement is to change the permissions
of a directory and all its contents

* The “X” (capital-X) bit means add the x bit only if some
other user also has an x bit. (Nice safety precaution)

* chmod accepts a -R option:
S chmod -R g+rwX, o+rX public-directory

* Adds rwx permissions on public-directory for the group owner,
and adds rx permissions on it for everyone else (other or
world)

* And any subdirectories, recursively
* And any contained executable files

* Contained non-executable files have rw permissions added for
the group owner, and r permission for everyone else

CIS2230 Linux Sys Admin

S. Ruegsegger

3 special permissions bits

* There are 3 more permission bits, but no more
places to put them!

e Sticky bit

e A't' or “T” in the world x spot

* Setuid (SUID)

e A's' or “S” in the user x spot

* Setgid (SGID)

e A 's'or “S” in the group x spot

CIS2230 Linux Sys Admin

S. Ruegsegger

Sticky bit (a t in world x)

* Used to mean “save text mode,” which would tell
the kernel to keep a program in memory

* Not needed any longer in modern Unix kernels
* (They do this automatically with advanced page systems)

* Now only has meaning for directories.
* You can put it on afile, but it doesn't “do” anything on a
file
* For a directory, the sticky bit means:

* Anyone can write to that directory,

e But only the user can delete the file from this directory.
* (or root, of course)

CIS2230 Linux Sys Admin

S. Ruegsegger

For example, /tmp

* The /tmp directory must be world-writable, so
that anyone may create/write temporary files
within it

* But that would normally mean that anyone may

delete any files within it — obviously a security
hole, and an inconvenience

* /tmp has the 'sticky’ bit set

e Expressed with a t (mnemonic: temporary
directory) in a listing for world executable:
S 1s -1d /tmp
drwxrwxrﬁZ)BO root root 11264 Dec 21 09:35 /tmp

* Enable ‘sticky’ permission with:
S chmod +t /data/tmp

CIS2230 Linux Sys Admin

VERMONT

S. Ruegsegger TECH

Special Directory Permissions: setgid ('s' in group x)

e Also a bit for directories only

* SGID on a directory means that any files created within
it acquire the same group ownership (gid) of the
directory

* Directories created within it acquire both the group ownership
and setgid permission also

* Useful for a shared directory where all users working
on its files are in a given group

* Expressed with an s in ‘group’ x position in a listing:

S 1s @ -d /data/projects
drwxrwgfr-x 16 root staff 4096 Oct 19 13:14
/data/projects

* Enable setgid with:
chmod g+s /data/projects

* Now add a file to that dir and new files will have the
inherited group

CIS2230 Linux Sys Admin

S. Ruegsegger

Special File Permissions: setuid (s in user x)

* Finally, a special bit for files (not dirs)

* When set:
A process run from a setuid file acquires the user ID of
the file’s owner (called the effective user ID)

* For security, Linux ignores the SUID for shell scripts
(with shebang).

e Expressed with an s in ‘user’ x position in a listing

* The primary example is the passwd command. Why?
$ 11 /usr/bin/passwd
-r -xr-x 1 root root 41284 Apr 8 2012 /usr/bin/passwd

* Enable setuid with:
chmod u+s /usr/local/bin/program

CIS2230 Linux Sys Admin

S. Ruegsegger

Displaying these special bits -- Review

e setuid: (file) run this file as the “owner” (not the SUSER)
* sin the user x position

e setgid: (dir) all new files in this dir will have the gid of
this dir
* sin the group x position
e sticky bit: (dir) only the ‘owner’ can delete a file they are
user-owner (even though the dir is world writeable)

* tin the other x position

» Uppercase vs lowercase

e Lowercase s or t indicates that the execute bit “underneath” is
enabled (i.e., thereis an x “behind” the letter)

* Uppercase S or T indicates that the execute bit “underneath” is
disabled

CIS2230 Linux Sys Admin

S. Ruegsegger

Permissions as Octals

* Sometimes you will find (octal) numbers referring to
sets of permissions

* Think binary to decimal:
e Convert rwx binary to a decimal number
e if set, considera 1, else O
* r--=100b=4
* rw-=110b=6
e rwx=111b =7
 Combine 3 decimals of user, group & world:
* rwWXrw-r-- =764

* You may use numerical permissions with chmod:
S chmod 664 *.txt

* |s equivalent to:
S chmod ug=rw,o=r *.txt

CIS2230 Linux Sys Admin

S. Ruegsegger

few more examples

* Everyone can read
o [--r-—-r-- = 444

e User can read and write
* rw-r--r-- = 644

* Everyone can read and write
* rW-rw-rw = 666

* Everyone can exectute
* rWXrwxrwx =777

2016 CI1S2230 Linux Sys Admin 19

S. Ruegsegger

Default file Permissions: umask

* The umask command allows you to set the default
permissions on newly created files and directories

e S umask returns the current umask value

e S umask <octal> defines a new umask for
that shell only

e How it works:
* |t masks the bits to set

e j.e., it defines the bits to make sure are “off” in the new
file permissions

CIS2230 Linux Sys Admin

S. Ruegsegger

How umask works

ex 1 file ex 2 file ex1 dir ex1 dir
base perm 666 666 777 777
umask 022 002 022 002
default file 644 664 755 775
permissions | rw-r—-r—-- |rW-rw-r-—- YWXY—XIr—X IWXYXWXY—X

more strict

less strict

. The 'base permission' for a file is 666 (or rw-rw-rw-)
. The 'base permission’ for a diris 777 (or rwxrwxrwx)

. Subtract the umask from the default

. The result is the default file (or directory) permissions

. You can convert the triplet decimal number to the individual file
permission bits if you want (e.g. S umask ug=rwx, o=rx)

. Notes:

You cannot use umask to make new files executable.

CIS2230 Linux Sys Admin

S. Ruegsegger

umask in Ubuntu

 Ubuntu stores the umask as a 4 char octal
* The “first” zero is the special sticky, setuid an setgid bits.

* The default umask definition
e Often stored for all usersissetin /etc/profile
* For Ubuntu, it's part of PAM andsetin /etc/login.def
e Users often overwriteitin ~/.profile

CIS2230 Linux Sys Admin

S. Ruegsegger

Changing File Ownership with chown

* The chown command changes the ownership of
files or directories
e Simple usage:
S sudo chown aaronc logfile.txt

* Makes logfile.txt be owned by the user aaronc

e Specify any number of files or directories
* Only the superuser can change the ownership of a

file

* This is a security feature — quotas, set-uid

CIS2230 Linux Sys Admin

S. Ruegsegger

Changing File Group Ownership with chgrp

* The chgrp command changes the group ownership
of files or directories
e Simple usage:
S chgrp staff report.txt
* Makes staff be the group owner of the file logfile.txt

e As for chown, specify any number of files or
directories

* The superuser may change the group ownership of
any file to any group

* The owner of a file may change its group ownership
* But only to a group of which the owner isa member

CIS2230 Linux Sys Admin

S. Ruegsegger

Changing the Ownership of a Directory and Its Contents

* A common requirement is to change the ownership
of a directory and its contents

* Both chown and chgrp accept a -R option:
S sudo chgrp -R staff shared-directory

* Mhemonic: ‘recursive’

* Changes the group ownership of shared-directory
to staff

* And its contents
* And its subdirectories, recursively

* Changing user ownership (superuser only):
$ sudo chown -R root /usr/local/share/misc/

CIS2230 Linux Sys Admin

S. Ruegsegger

2 birds with 1 stone

* The chown command can also change the group.
Just use a colon

$ sudo chown steve:steve ~/home/project/*
S sudo chown fred:students ~/home/fred
S sudo chown 1003:1000 ~/home/susie

CIS2230 Linux Sys Admin

	Slide 1: File Permissions
	Slide 2: Review – users
	Slide 3: File permission introduction
	Slide 4: Permission bits for Files
	Slide 5: Permission bits for Directories
	Slide 6: 3 groups of 3
	Slide 7: “modes” from permission bits
	Slide 8: Change modes: chmod
	Slide 9: Symbolic chmod
	Slide 10: Symbolic chmod
	Slide 11: Changing the Permissions recursively
	Slide 12: 3 special permissions bits
	Slide 13: Sticky bit (a t in world x)
	Slide 14: For example, /tmp
	Slide 15: Special Directory Permissions: setgid ('s' in group x)
	Slide 16: Special File Permissions: setuid (s in user x)
	Slide 17: Displaying these special bits -- Review
	Slide 18: Permissions as Octals
	Slide 19: few more examples
	Slide 20: Default file Permissions: umask
	Slide 21: How umask works
	Slide 22: umask in Ubuntu
	Slide 23: Changing File Ownership with chown
	Slide 24: Changing File Group Ownership with chgrp
	Slide 25: Changing the Ownership of a Directory and Its Contents
	Slide 26: 2 birds with 1 stone

