
S. Ruegsegger

CIS 2230 Linux System Administration

Lecture 13

Steve Ruegsegger

File Permissions

2016 CIS2230 Linux Sys Admin 1

S. Ruegsegger

Review – users

• What is the su command used for?

• What is the uid?

• What is uid 0?

• What command allows you to run as root for 1
command?

• How do you get a root shell prompt using sudo?

• What is the command to change your password?

• What makes a user “a user”?

• What are the 3 things that happens when you make a
new user?

• When should you give your pw to a sys admin to help
you out?

2016 CIS2230 Linux Sys Admin 2

S. Ruegsegger

File permission introduction

• An advantage of Linux = designed for multiple users
from the start

• This provided security for the OS and the users.
• The users are protected from each other
• The OS is protected from all users

• The OS has built-in file permissions and will only
allow actions on files when permitted.

• 3 Actions: read, write, execute

• 3 ids for those actions: user, group, other (a.k.a.
everyone or world)

• “3 groups of 3”

• Per id, the actions are combined into “modes”

2016 CIS2230 Linux Sys Admin 3

S. Ruegsegger

Permission bits for Files
• Three types of permissions on files, each denoted by a letter

• A permission represents an action that can be done on the file:

Permission

(mode) Letter Description

Read r Permission to read the data stored in the file

Write w Permission to append data to the file, to truncate

 the file, or to overwrite existing data

Execute x Permission to attempt to execute the contents of the

 file as a program

• Occasionally referred to as ‘permission bits’

• Note that for scripts, you need both execute permission and read
permission.

2016 CIS2230 Linux Sys Admin 4

S. Ruegsegger

Permission bits for Directories

• The r, w, and x permissions also have a meaning for directories

• The meanings for directories are slightly different:

Permission Letter Description

Read r Permission to get a listing of the directory

Write w Permission to create, delete, or rename files (or

 subdirectories) within the directory

Execute x Permission to change to the directory, or to use the

 directory as an intermediate part of a path to a file

• The difference between read and execute on directories is
specious — having one but not the other is almost never what you
want (except when it is).

2016 CIS2230 Linux Sys Admin 5

S. Ruegsegger

3 groups of 3

• These bits are in groups of 3
• A rwx set for user, group, world

• 3 groups x 3 bit = 9 bits (duh)

• The ls -l command allows you to look at the permissions:
$ ls -la

total 1284

drwxr-xr-x 2 steve steve 4096 2011-09-15 21:52 .

drwxr-xr-x 31 steve steve 4096 2011-09-15 21:52 ..

-rw------- 1 steve steve 16005 2011-09-04 15:33 who.txt

-rw------- 1 steve steve 19938 2011-09-04 15:33 w.txt

-rw------- 1 steve steve 224268 2011-09-04 15:33 psef.txt

-rw-r--r-- 1 steve steve 99982 2011-09-04 16:11 pidkill.ae.gz

-rw-r--r-- 1 steve steve 97421 2011-09-04 16:11 pidkill.ad.gz

2016 CIS2230 Linux Sys Admin 6

User rwx permissions

Group rwx permissions

Other rwx permissions

uid

dir

gid

What does $ ls -n do?

S. Ruegsegger

“modes” from permission bits

• User can do everything, everyone can only read
-rwxr--r-- 1 steve steve 1234 2011-09-04 16:11 foo.bar

• Everyone can do everything
-rwxrwxrwx 1 steve steve 1234 2011-09-04 16:11 foo.bar

• Only reading for everyone
-r--r--r-- 1 steve steve 1234 2011-09-04 16:11 foo.bar

• Only the user can read & write
-rw------- 1 steve steve 1234 2011-09-04 16:11 foo.bar

2016 CIS2230 Linux Sys Admin 7

S. Ruegsegger

Change modes: chmod

• The chmod command changes the permissions of a
file or directory

• A file’s permissions may be changed only by its
owner or by the superuser

• chmod takes an argument describing the new
permission mode

• There are two ways to define the new mode
• Symbolic: <id>[+-=]<action>

• Octal: 755

2016 CIS2230 Linux Sys Admin 8

S. Ruegsegger

Symbolic chmod

• Symbolic format – set of 3 symbols:
[ugoa][+=-][rwxXst]

• First letter indicates who to set permissions for:
• u for the file’s owner
• g for the group owner
• o for other users (not in first 2, a.k.a. world/everyone)
• a for all 3 sets

• Second char is an action
• = sets permissions for files (remove any other bits for that

user)
• + adds permissions to those already set,
• - removes permissions

• Third letters indicate which of the r, w, x permissions to
set
• Usually r, rw, rwx, or rx

2016 CIS2230 Linux Sys Admin 9

S. Ruegsegger

Symbolic chmod

• Add execute for me
$ chmod u+x backup.sh

• Add read and write for everyone
$ chmod a+rw lab1.doc

• Only I can read and write (everything else is off)
$ chmod u=rw,og= lab1.doc

• Remove execute from group and world
$ chmod og-rx backup.sh

• Add read and write to group, but only read to world
$ chmod g+rx,o+r lab1.doc

2016 CIS2230 Linux Sys Admin 10

S. Ruegsegger

Changing the Permissions recursively

• A common requirement is to change the permissions
of a directory and all its contents

• The “X” (capital-X) bit means add the x bit only if some
other user also has an x bit. (Nice safety precaution)

• chmod accepts a -R option:
$ chmod -R g+rwX,o+rX public-directory

• Adds rwx permissions on public-directory for the group owner,
and adds rx permissions on it for everyone else (other or
world)

• And any subdirectories, recursively

• And any contained executable files

• Contained non-executable files have rw permissions added for
the group owner, and r permission for everyone else

2016 CIS2230 Linux Sys Admin 11

S. Ruegsegger

3 special permissions bits

• There are 3 more permission bits, but no more
places to put them!

• Sticky bit
• A 't' or “T” in the world x spot

• Setuid (SUID)
• A 's' or “S” in the user x spot

• Setgid (SGID)
• A 's' or “S” in the group x spot

2016 CIS2230 Linux Sys Admin 12

S. Ruegsegger

Sticky bit (a t in world x)

• Used to mean “save text mode,” which would tell
the kernel to keep a program in memory

• Not needed any longer in modern Unix kernels
• (They do this automatically with advanced page systems)

• Now only has meaning for directories.
• You can put it on a file, but it doesn't “do” anything on a

file

• For a directory, the sticky bit means:
• Anyone can write to that directory,

• But only the user can delete the file from this directory.
• (or root, of course)

2016 CIS2230 Linux Sys Admin 13

S. Ruegsegger

For example, /tmp

• The /tmp directory must be world-writable, so
that anyone may create/write temporary files
within it

• But that would normally mean that anyone may
delete any files within it — obviously a security
hole, and an inconvenience

• /tmp has the 'sticky’ bit set

• Expressed with a t (mnemonic: temporary
directory) in a listing for world executable:
$ ls -ld /tmp

drwxrwxrwt 30 root root 11264 Dec 21 09:35 /tmp

• Enable ‘sticky’ permission with:
$ chmod +t /data/tmp

2016 CIS2230 Linux Sys Admin 14

S. Ruegsegger

Special Directory Permissions: setgid ('s' in group x)

• Also a bit for directories only
• SGID on a directory means that any files created within

it acquire the same group ownership (gid) of the
directory
• Directories created within it acquire both the group ownership

and setgid permission also

• Useful for a shared directory where all users working
on its files are in a given group

• Expressed with an s in ‘group’ x position in a listing:
$ ls -l -d /data/projects

drwxrwsr-x 16 root staff 4096 Oct 19 13:14
/data/projects

• Enable setgid with:
chmod g+s /data/projects

• Now add a file to that dir and new files will have the
inherited group

2016 CIS2230 Linux Sys Admin 15

S. Ruegsegger

Special File Permissions: setuid (s in user x)

• Finally, a special bit for files (not dirs)

• When set:
A process run from a setuid file acquires the user ID of
the file’s owner (called the effective user ID)

• For security, Linux ignores the SUID for shell scripts
(with shebang).

• Expressed with an s in ‘user’ x position in a listing

• The primary example is the passwd command. Why?
$ ll /usr/bin/passwd

-rwsr-xr-x 1 root root 41284 Apr 8 2012 /usr/bin/passwd

• Enable setuid with:
chmod u+s /usr/local/bin/program

2016 CIS2230 Linux Sys Admin 16

S. Ruegsegger

Displaying these special bits -- Review

• setuid: (file) run this file as the “owner” (not the $USER)
• s in the user x position

• setgid: (dir) all new files in this dir will have the gid of
this dir
• s in the group x position

• sticky bit: (dir) only the ‘owner’ can delete a file they are
user-owner (even though the dir is world writeable)
• t in the other x position

• Uppercase vs lowercase
• Lowercase s or t indicates that the execute bit “underneath” is

enabled (i.e., there is an x “behind” the letter)

• Uppercase S or T indicates that the execute bit “underneath” is
disabled

2016 CIS2230 Linux Sys Admin 17

S. Ruegsegger

Permissions as Octals

• Sometimes you will find (octal) numbers referring to
sets of permissions

• Think binary to decimal:
• Convert rwx binary to a decimal number
• if set, consider a 1, else 0
• r-- = 100b = 4
• rw- = 110b = 6
• rwx = 111b = 7

• Combine 3 decimals of user, group & world:
• rwxrw-r-- = 764

• You may use numerical permissions with chmod:
$ chmod 664 *.txt

• Is equivalent to:
$ chmod ug=rw,o=r *.txt

2016 CIS2230 Linux Sys Admin 18

S. Ruegsegger

few more examples

• Everyone can read
• r--r--r-- = 444

• User can read and write
• rw-r--r-- = 644

• Everyone can read and write
• rw-rw-rw = 666

• Everyone can exectute
• rwxrwxrwx = 777

2016 CIS2230 Linux Sys Admin 19

S. Ruegsegger

Default file Permissions: umask

• The umask command allows you to set the default
permissions on newly created files and directories

• $ umask returns the current umask value

• $ umask <octal> defines a new umask for
that shell only

• How it works:
• It masks the bits to set

• i.e., it defines the bits to make sure are “off” in the new
file permissions

2016 CIS2230 Linux Sys Admin 20

S. Ruegsegger

How umask works

ex 1 file ex 2 file ex1 dir ex1 dir

base perm 666 666 777 777

umask 022 002 022 002

default file 644 664 755 775

permissions rw-r--r-- rw-rw-r-- rwxr-xr-x rwxrwxr-x

more strict less strict

2016 CIS2230 Linux Sys Admin 21

● The 'base permission' for a file is 666 (or rw-rw-rw-)

● The 'base permission' for a dir is 777 (or rwxrwxrwx)

● Subtract the umask from the default

● The result is the default file (or directory) permissions

● You can convert the triplet decimal number to the individual file
permission bits if you want (e.g. $ umask ug=rwx,o=rx)

● Notes:
●You cannot use umask to make new files executable.

S. Ruegsegger

umask in Ubuntu

• Ubuntu stores the umask as a 4 char octal
• The “first” zero is the special sticky, setuid an setgid bits.

• The default umask definition
• Often stored for all users is set in /etc/profile

• For Ubuntu, it's part of PAM and set in /etc/login.def

• Users often overwrite it in ~/.profile

2016 CIS2230 Linux Sys Admin 22

S. Ruegsegger

Changing File Ownership with chown

• The chown command changes the ownership of
files or directories

• Simple usage:
$ sudo chown aaronc logfile.txt

• Makes logfile.txt be owned by the user aaronc

• Specify any number of files or directories

• Only the superuser can change the ownership of a
file
• This is a security feature — quotas, set-uid

2016 CIS2230 Linux Sys Admin 23

S. Ruegsegger

Changing File Group Ownership with chgrp

• The chgrp command changes the group ownership
of files or directories

• Simple usage:
$ chgrp staff report.txt

• Makes staff be the group owner of the file logfile.txt

• As for chown, specify any number of files or
directories

• The superuser may change the group ownership of
any file to any group

• The owner of a file may change its group ownership
• But only to a group of which the owner is a member

2016 CIS2230 Linux Sys Admin 24

S. Ruegsegger

Changing the Ownership of a Directory and Its Contents

• A common requirement is to change the ownership
of a directory and its contents

• Both chown and chgrp accept a -R option:
$ sudo chgrp -R staff shared-directory

• Mnemonic: ‘recursive’

• Changes the group ownership of shared-directory
to staff
• And its contents

• And its subdirectories, recursively

• Changing user ownership (superuser only):
$ sudo chown -R root /usr/local/share/misc/

2016 CIS2230 Linux Sys Admin 25

S. Ruegsegger

2 birds with 1 stone

• The chown command can also change the group.
Just use a colon
$ sudo chown steve:steve ~/home/project/*

$ sudo chown fred:students ~/home/fred

$ sudo chown 1003:1000 ~/home/susie

2016 CIS2230 Linux Sys Admin 26

	Slide 1: File Permissions
	Slide 2: Review – users
	Slide 3: File permission introduction
	Slide 4: Permission bits for Files
	Slide 5: Permission bits for Directories
	Slide 6: 3 groups of 3
	Slide 7: “modes” from permission bits
	Slide 8: Change modes: chmod
	Slide 9: Symbolic chmod
	Slide 10: Symbolic chmod
	Slide 11: Changing the Permissions recursively
	Slide 12: 3 special permissions bits
	Slide 13: Sticky bit (a t in world x)
	Slide 14: For example, /tmp
	Slide 15: Special Directory Permissions: setgid ('s' in group x)
	Slide 16: Special File Permissions: setuid (s in user x)
	Slide 17: Displaying these special bits -- Review
	Slide 18: Permissions as Octals
	Slide 19: few more examples
	Slide 20: Default file Permissions: umask
	Slide 21: How umask works
	Slide 22: umask in Ubuntu
	Slide 23: Changing File Ownership with chown
	Slide 24: Changing File Group Ownership with chgrp
	Slide 25: Changing the Ownership of a Directory and Its Contents
	Slide 26: 2 birds with 1 stone

