
Types and Expressions
Java Programming

Vermont Technical College

Peter Chapin

Variables

• Each data object must be declared (given a name and a type).
• int x; // x holds integers.

float y; // y holds “floating point” numbers.

char z; // z holds characters (letters).

• The names should actually be descriptive.
• int maxClassSize;

float milesPerGallon;

char middleInitial;

• Yes, spell out words fully!
• Capitalization called “camelCase.” It’s an industry standard.

Assignment Statements

• You give values to variables by assigning to them.
• float base;
float height;

float triangleArea;

base = 2.0;

height = 3.5;

triangleArea = base * height / 2;

• When first declared their values are “uninitialized.”
• Don’t use uninitialized variables!

Initialized Declarations

• It is also possible (even recommended) to initialize when declaring.
• float base = 2.0;
float height = 3.5;

float triangleArea = base * height / 2.0;

• Sometimes you won’t have a value for a variable until later.
• That’s fine… just be sure you don’t use it uninitialized!

Type?

• A very important concept…
• Every variable (and every expression) has a type that defines a set of possible

values that variable (or expression) can have.

• int x;

• Here x can only be an integer… not a number with a fractional part (3.14), not a letter
(‘a’), not a string (“Hello”), etc.

• You need to decide what type to make each variable… requires thinking!
• Number of students in a class: int (we don’t have ½ a student in a class)

• Your weight in pounds: float? int? (do you want to deal with fractional pounds?)

• The user’s first name: String (a sequence of characters like “Peter”)

• The area of a circle: float (most likely)

Kinds of Types

• Java divides types into two broad categories.
• Primitive types: These are built into the language and represent simple

concepts like numbers, letters, etc.

• Class types: These you define yourself to represent more abstract concepts of
your choosing like clocks, cats, printers, money, etc.
• A lot of programming is about deciding what types are most suitable and then defining

them properly.

• We will talk about this at length!

Primitive Types

Type Name Minimum Value Maximum Value Size (bytes)

byte -128 127 1

short -32768 32767 2

int -2147483648 2147483647 4

long -9223372036854775808 9223372036854775807 8

float -3.403e+38 (approx) 3.403e+38 (approx) 4

double -1.798e+308 (approx) 1.798e+308 (approx) 8

char 0 65535 2

boolean false true

Basic Numeric Operators

Operator Name

+ Addition

- Subtraction (or negation)

* Multiplication

/ Division

% (percent symbol) Remainder (“modulus”)

Basic Expressions

• Use the operators in combination to do numeric calculations
• area = width * height;
cost = basePrice + extraItems * costPerItem;

finalCost = cost + taxRate * cost;

• (Quiz: what types would be reasonable for the variables above?)

• Use parentheses to organize complex computations
• gamma = (load – source) / (load + source);

root1 = (-b + Math.sqrt(b*b – 4*a*c)) / (2 * a);

twisted = (a + (b/(c – d) % 5)) / 2;

Remainder Operator?

• Division of floating point numbers “works.”
• 5.0/2.0 is 2.5 (approximately)

5.0/4.0 is 1.25 (approximately)

• Division of integers throws away the fractional part.
• 5/2 is 2 (exactly)

5/4 is 1 (exactly)

• The remainder operator gives the remainder after integer division
• 5 % 2 is 1 (2 goes into 5 twice with remainder of 1)

5 % 4 is 1 (4 goes into 5 once with remainder of 1)
5 % 3 is 2 (3 goes into 5 once with remainder of 2)

Precedence

• Question: What is 3 + 4 * 5?
• Is that (3 + 4) * 5 which is 35 or…

Is that 3 + (4 * 5) which is 23?

• The answer depends on the relative precedence of + and *

• Answer: multiplication has “higher” precedence; binds more tightly.
• 3 + 4 * 5 is the same as 3 + (4*5)

• If you want the other interpretation you must use parentheses.

Associativity

• Question: What is 3 * 4 / 3 * 5?
• (3*4)/(3*5) which is 12/15 which is 0 (why?)

3*(4/3)*5 which is 3*1*5 which is 15

• Multiplication and Division have the same precedence.
• However, they have left-to-right associativity

• (((3 * 4) / 3) * 5) which is ((12/3) * 5) which is (4*5) which is 20

• If you are unsure use extra parentheses!

• Consider:
• root1 = (-b + Math.sqrt(b*b – 4*a*c)) / (2*a)

• The parentheses around 2*a are necessary. Why?

