Cryptographic Hashes

Peter Chapin

Vermont State University

CIS-3240: Computer Security

What is a File?

- For our purposes, a file is just a "bag of bytes."
 - A collection of values from 0 to 255 (or 0x00 to 0xFF in hex).
 - Each value is 8 bits
 - No interpretation!
 - We are not concerned with the meaning of the file's contents
- A file can be small
 - ... even just one byte
- A file can be large
 - ... many gigabytes or more!
- A file contains an integer number of bytes; there are no partial bytes.

Simple Checksum

- Add all the bytes of a file, ignoring carry
 - File: 0x00 0x05 0x2C 0x3A 0xFF (just five bytes)
 - Checksum: 0x6A
- Send the file and the checksum
 - The receiver computes the checksum and compares it with the value received
 - If they disagree, there was a transmission error
- Provides error detection

Error Detection Incomplete

- Consider this case
 - Original file: 0x00 0x05 0x2C 0x3A 0xF
 - Modified file: 0x01 0x04 0x2C 0x3A 0xF
 - Both have the same checksum
- The receiver won't notice that the file has been modified!
- However...
 - Errors due to "natural causes" (noise, truncated files, etc) will *usually* be detected.

Error Detection Always Incomplete

- No error detection scheme can detect all errors!
 - 8-bit checksum => only 256 possible checksum values
 - 1000-byte message \Rightarrow 2⁸⁰⁰⁰ messages!
 - Thus, many (many!) messages must have the same checksum
 - Note that I'm using "file" and "message" interchangeably.

CRC Checksums

- Cyclic Redundancy Check checksums...
 - ... are typically larger (16-bit or 32-bit)
 - ... are good against naturally occurring errors (burst noise)
 - ... are easy to calculate in hardware
- They are commonly used
 - NICs compute CRCs on incoming/outgoing network packets
 - Disk controllers compute CRCs on disk blocks read/written
 - This is how our machines know they've read or received bad data!

Enter: Mallory

- Unfortunately, CRCs are not good against a malicious attacker
 - Mallory can "easily" modify a message such that it has the same CRC.
 - Message: "I will pay Mallory \$100.00"
 - Modified Message: "I will pay Mallory \$1000.00"
 - Mallory then adjusts the message in some trivial way so the CRC is the same.
 - e.g., adds extra spaces, blank lines, rewords sentences, etc.
- Violation of Data Integrity!
 - The second of the "Big Two" security services after confidentiality

Cryptographic Hash Functions

- A cryptographic hash function (or just "hash function")...
 - ... is like a super checksum
 - Mallory can't feasibly modify the message so that it produces the same hash value.
- Let
 - M be the message; F be the hash function; H be the hash value
 - Then we can write: H = F(M)
- Typical hash values are large (160 bits or more)
 - ... but still small compared to the message being hashed (usually)

Hash Function Behavior

- Pre-Image Resistance
 - Given H, it should be infeasible to find an M such that H = F(M)
- Collision Resistance
 - Let $H = F(M_1)$ for a given M_1 , it should be infeasible to find a second message M_2 such that $H = F(M_2)$
 - Note that many such messages exist, but it should be difficult to find one
 - Mallory should be unable to modify M_1 to some M_2 with the same H
- Strong Collision Resistance
 - It should be infeasible to find two messages M_1 and M_2 such that $H = F(M_1)$ and $H = F(M_2)$. Note that neither message is given here.

Happy Birthday!

- All serious hash functions have strong collision resistance because of the Birthday Attack
 - Go around the room and have everyone announce their birthday
 - About how many people do you need before two people have the same birthday?
 - Much fewer than you might think!
 - Each birthday announcement adds another target for new people to match
 - When the number of people involved is 23 (or more), the probability is greater than 50% that two will have the same birthday.
 - Sometimes called the *Birthday Surprise*

Alice Cheats Bob

- Alice prepares two contracts:
 - C1: "Alice will pay Bob a fortune for no significant work." C2: "Alice will pay Bob nothing, and he will become her slave."
 - Alice identifies 32 (for example) independent, inconsequential changes to each contract
 - e.g., extra spaces, blank lines, adjusted wordings
 - Alice computes H = F(C1) for every possible combination of changes and makes a table of results. The table has 2^{32} entries
 - Alice computes H = F(C2) for every possible combination of changes and compares each result with the previous table. Finds match!

Alice Cheats Bob

- After 2³³ hash computations, Alice has now found two messages, *C1* and *C2*, with the same hash!
- Alice does this:
 - Alice presents C1 to Bob, which he signs (we will talk about digital signatures later).
 - Alice cuts his signature from C1 and appends it to C2
 - The signature verifies because C2's hash is the same as C1's!
 - Bob is now Alice's slave
- Surprisingly, this method works fine for 64-bit hashes!
 - ... because of the Birthday Surprise

64 Bit Hashes Too Small

- Any reasonable hash function generates 128-bit hashes or more
- Today, most people use 160-bit or 256-bit hashes (or even larger)
- Consider what a 160-bit hash means for Alice
 - She has to do 2^{80} hash calculations to make a table with 2^{80} hash values, each 20 bytes in size (so $20 * 2^{80}$ bytes)
 - She has to do another 2⁸⁰ hash calculations and look up each hash value in the previously made table
 - Very difficult!
- Note: Birthday Attack is independent of hash function
 - Amounts to "brute force" for the hash function world

Caution!

- Although one can't (feasibly) change a message to have the same hash...
 - ... if the attacker is in a position to change the message, they can <u>also</u> change the hash to match.
 - ... Thus, just computing a hash by itself doesn't ensure data integrity. It must be coupled with something else (digital signature, MAC, etc.). We will get to those things.