
Data Encryption Standard
Peter Chapin

Vermont State University

CIS-3240: Computer Security

Brief History

• 1973: National Bureau of Standards (NBS) issued a request for design

• IBM submitted promising candidate based on Lucifer (an IBM cipher)

• NBS asked the NSA to evaluate the algorithm. IBM agreed to let
others implement it (IBM had patented it)
• The NSA made some changes but didn’t explain why. Some people assumed

they introduced a back door of some kind.

• 1975: NBS published the algorithm and asked for comments.

• 1976: DES adopted as standard: FIPS PUB 46 “Data Encryption
Standard.”

DES Basics

• 64-bit block cipher

• 56-bit key (considered too vulnerable to brute force today)
• Key can be given as 8 ASCII characters (7 bits per character)

• Key usually expressed as a 64-bit number with one parity bit ignored

• Feistel cipher
• … with an initial permutation of the block and a final inverse permutation

• Fairly easy to implement in hardware

• Fairly awkward to implement in software

DES Function ‘f’

Ri-1

Expansion Permutation

S-Box Substitution

P-Box Permutation

32

48

48

32

32

Li-1

Ri

Keyi-1

Rotate Left

Compression Permutation

Keyi

Rotate Left

28 28

48

56-bit key32-bit half-block

• i is the round number (i = 0 is the initial input)
• 16 rounds total
• 8 S-boxes, each with 6 bits in and 4 bits out
• S-boxes add non-linearity. Source of DES security
• Rotation amounts of 1 or 2 bits depending on the round

Bitwise Exclusive OR (XOR)

1 0 0 1 1 1 0 0

1 1 1 1 0 0 0 0XOR

0 1 1 0 1 1 0 0

1 bits XORed into a value invert that value

0 bits XORed into a value keep that value

0 1 1 0 1 1 0 0

1 1 1 1 0 0 0 0XOR

1 0 0 1 1 1 0 0

XORing the same value twice recovers the original!

• A xor B = B xor A (communitive)
• (A xor B) xor C = A xor (B xor C) (associative)
• A xor 0 = A
• A xor A = 0
• (A xor B) xor A = (A xor A) xor B = 0 xor B = B

Weak Keys

• DES weak keys
• 0x0000000, 0x0000000 <= 56 bits expressed as two 28-bit hex numbers
• 0x0000000, 0xFFFFFFF

• 0xFFFFFFF, 0x0000000

• 0xFFFFFFF, 0xFFFFFFF

• Rotations have no effect during subkey generation

• Most algorithms have some weak keys (not necessarily the same
ones)
• Programs can (and should) detect them and prevent them from being used

Workaround for Small Key: Encrypt Twice?

• Double DES… using two different keys, K1 and K2

• But wait!
• EK2(EK1(P)) = EK3(P) for some K3?
• If so, Double DES would offer no additional security.
• Encryption with a key is like a permutation of plaintext blocks to ciphertext
• Application of two permutations will produce another
• Question: Is DES closed (will two DES permutations produce another in DES)?

• 1992: It was proved that DES is not closed

• Unfortunately, Double DES is not significantly better than single DES.
• Not worth the trouble

Meet In The Middle Attack

• General method of attack in cases like this…
• Assume you have a known (plaintext, ciphertext) pair

• Ciphertext result from plaintext you know or can guess

1. Compute table of all possible encryptions (256 of them)

2. Compute all decryptions of ciphertext
1. For each decryption, see if the encryption is in the table

2. If so, you have found the two keys

• Only requires 257 operations

• BUT… does require storage of 256 ciphertext blocks
• 256 * 8 = 259 bytes = 247 Terabytes

• Could be a problem ☺

Triple DES (3DES)

E D E

K1 K2 K3

• Interoperability with single DES: Let K1 = K2 = K3

• Usually, 3DES is used with two keys: K1 = K3 and K2 giving 112 bits of key material
• Notice 3DES with two keys is no faster than 3DES with three keys.
• 3DES is still used, but it tends to be slow.

	Slide 1: Data Encryption Standard
	Slide 2: Brief History
	Slide 3: DES Basics
	Slide 4: DES Function ‘f’
	Slide 5: Bitwise Exclusive OR (XOR)
	Slide 6: Weak Keys
	Slide 7: Workaround for Small Key: Encrypt Twice?
	Slide 8: Meet In The Middle Attack
	Slide 9: Triple DES (3DES)

