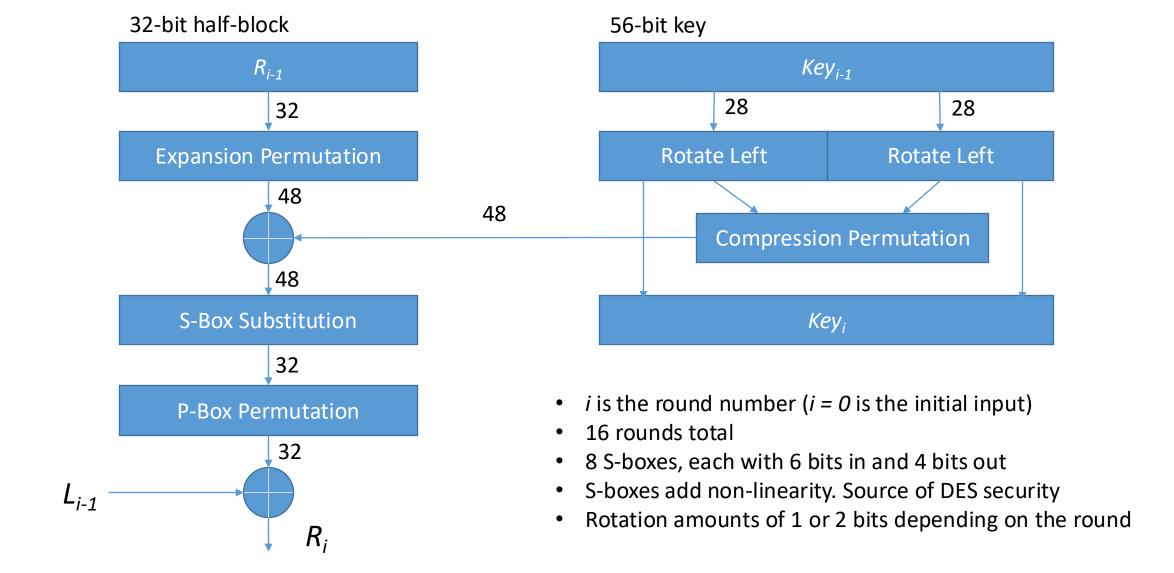
Data Encryption Standard

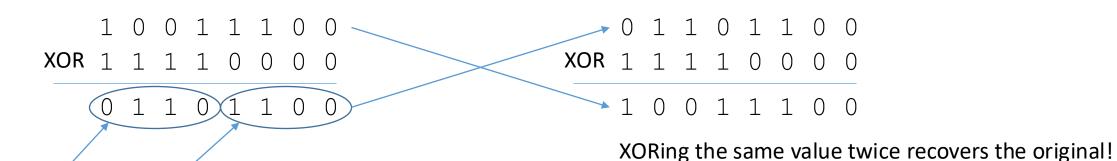
Peter Chapin

Vermont State University

CIS-3240: Computer Security


Brief History

- 1973: National Bureau of Standards (NBS) issued a request for design
- IBM submitted promising candidate based on Lucifer (an IBM cipher)
- NBS asked the NSA to evaluate the algorithm. IBM agreed to let others implement it (IBM had patented it)
 - The NSA made some changes but didn't explain why. Some people assumed they introduced a back door of some kind.
- 1975: NBS published the algorithm and asked for comments.
- 1976: DES adopted as standard: FIPS PUB 46 "Data Encryption Standard."


DES Basics

- 64-bit block cipher
- 56-bit key (considered too vulnerable to brute force today)
 - Key can be given as 8 ASCII characters (7 bits per character)
 - Key usually expressed as a 64-bit number with one parity bit ignored
- Feistel cipher
 - ... with an initial permutation of the block and a final inverse permutation
- Fairly easy to implement in hardware
- Fairly awkward to implement in software

DES Function 'f'

Bitwise Exclusive OR (XOR)

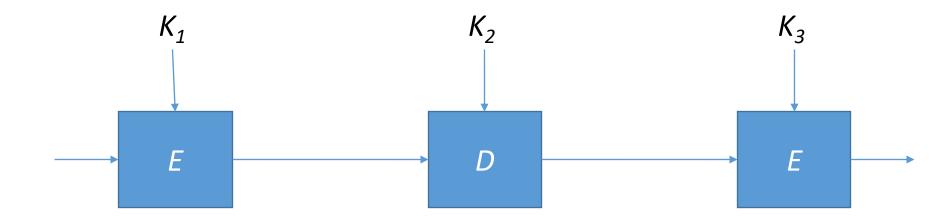
1 bits XORed into a value invert that value

0 bits XORed into a value keep that value

- A xor B = B xor A (communitive)
- (A xor B) xor C = A xor (B xor C) (associative)
- A xor 0 = A
- A xor A = 0
- (A xor B) xor A = (A xor A) xor B = 0 xor B = B

Weak Keys

- DES weak keys
 - 0×0000000 , 0×00000000 <= 56 bits expressed as two 28-bit hex numbers
 - 0x000000, 0xFFFFFF
 - 0xfffffff, 0x000000
 - Oxfffffff, Oxfffffff
- Rotations have no effect during subkey generation
- Most algorithms have some weak keys (not necessarily the same ones)
 - Programs can (and should) detect them and prevent them from being used


Workaround for Small Key: Encrypt Twice?

- Double DES... using two different keys, K_1 and K_2
- But wait!
 - $E_{K2}(E_{K1}(P)) = E_{K3}(P)$ for some K_3 ?
 - If so, Double DES would offer no additional security.
 - Encryption with a key is like a permutation of plaintext blocks to ciphertext
 - Application of two permutations will produce another
 - Question: Is DES closed (will two DES permutations produce another in DES)?
- 1992: It was proved that DES is not closed
- Unfortunately, Double DES is not significantly better than single DES.
 - Not worth the trouble

Meet In The Middle Attack

- General method of attack in cases like this...
 - Assume you have a known (plaintext, ciphertext) pair
 - Ciphertext result from plaintext you know or can guess
 - 1. Compute table of all possible encryptions (2⁵⁶ of them)
 - 2. Compute all decryptions of ciphertext
 - 1. For each decryption, see if the encryption is in the table
 - 2. If so, you have found the two keys
 - Only requires 2⁵⁷ operations
 - BUT... does require storage of 2⁵⁶ ciphertext blocks
 - $2^{56} * 8 = 2^{59}$ bytes = 2^{47} Terabytes
 - Could be a problem ©

Triple DES (3DES)

- Interoperability with single DES: Let $K_1 = K_2 = K_3$
- Usually, 3DES is used with two keys: $K_1 = K_3$ and K_2 giving 112 bits of key material
- Notice 3DES with two keys is no faster than 3DES with three keys.
- 3DES is still used, but it tends to be slow.