Data Encryption Standara

Peter Chapin
Vermont State University
CIS-3240: Computer Security



Brief History

e 1973: National Bureau of Standards (NBS) issued a request for design
* IBM submitted promising candidate based on Lucifer (an IBM cipher)

* NBS asked the NSA to evaluate the algorithm. IBM agreed to let
others implement it (IBM had patented it)

* The NSA made some changes but didn’t explain why. Some people assumed
they introduced a back door of some kind.

* 1975: NBS published the algorithm and asked for comments.

* 1976: DES adopted as standard: FIPS PUB 46 “Data Encryption
Standard.”



DES Basics

* 64-bit block cipher

* 56-bit key (considered too vulnerable to brute force today)

* Key can be given as 8 ASCII characters (7 bits per character)
e Key usually expressed as a 64-bit number with one parity bit ignored

* Feistel cipher
e ... with an initial permutation of the block and a final inverse permutation

* Fairly easy to implement in hardware

* Fairly awkward to implement in software



DES Function ‘1’

32-bit half-block

Expansion Permutation

48

56-bit key

Rotate Left Rotate Left

Compression Permutation

i is the round number (i = 0 is the initial input)

16 rounds total

8 S-boxes, each with 6 bits in and 4 bits out

S-boxes add non-linearity. Source of DES security
Rotation amounts of 1 or 2 bits depending on the round



Bitwise Exclusive OR (XOR)

11 01 1011¢00¢0
0 0 XOR'1 1 1100060

10011100

XORing the same value twice recovers the original!

1 001 0 0
XOR'1 1 11 0 0

1 bits XORed into a value invert that value

0 bits XORed into a value keep that value A xor B =B xor A (communitive)
* (A xor B) xor C = A xor (B xor C) (associative)
* Axor0=A
* AxorA=0

* (A xor B) xor A= (A xor A) xor B=0 xor B=B



Weak Keys

* DES weak keys

« 0x0000000, 0x0000000 <= 56 bits expressed as two 28-bit hex numbers
* Ox0000000, OXFFFFFFF

* OxFFFFFFFEF, 0x0000000
* OXFFFFFFF, OxFFFFFFF

* Rotations have no effect during subkey generation

* Most algorithms have some weak keys (not necessarily the same
ones)

* Programs can (and should) detect them and prevent them from being used



Workaround for Small Key: Encrypt Twice?

* Double DES... using two different keys, K, and K,

* But wait!
* Ei,(Ex1(P)) = E5(P) for some K;?
* |f so, Double DES would offer no additional security.
* Encryption with a key is like a permutation of plaintext blocks to ciphertext
* Application of two permutations will produce another
e Question: Is DES closed (will two DES permutations produce another in DES)?

e 1992: It was proved that DES is not closed

* Unfortunately, Double DES is not significantly better than single DES.
* Not worth the trouble



Meet In The Middle Attack

* General method of attack in cases like this...
e Assume you have a known (plaintext, ciphertext) pair
e Ciphertext result from plaintext you know or can guess
1. Compute table of all possible encryptions (2°° of them)

2. Compute all decryptions of ciphertext

1. For each decryption, see if the encryption is in the table
2. If so, you have found the two keys

* Only requires 2° operations

* BUT... does require storage of 2°° ciphertext blocks
o 2°6* 8 =725 pytes = 2%’ Terabytes
e Could be a problem ©



Triple DES (3DES)

* Interoperability with single DES: Let K; = K, = K;

* Usually, 3DES is used with two keys: K; = K; and K, giving 112 bits of key material
* Notice 3DES with two keys is no faster than 3DES with three keys.

* 3DES is still used, but it tends to be slow.



	Slide 1: Data Encryption Standard
	Slide 2: Brief History
	Slide 3: DES Basics
	Slide 4: DES Function ‘f’
	Slide 5: Bitwise Exclusive OR (XOR)
	Slide 6: Weak Keys
	Slide 7: Workaround for Small Key: Encrypt Twice?
	Slide 8: Meet In The Middle Attack
	Slide 9: Triple DES (3DES)

