

Distributed Operating Systems

Peter Chapin
Vermont State University

Distributed Characteristics

● Node Characteristics
– Heterogeneous or homogeneous?
– Autonomous or specialized?
– One security domain or many domains?

● Communication
– Conventional network or dedicated network?
– Slow communication or fast communication?
– General protocols or specialized protocols?

● Applications
– Nodes work on same problem or many problems?

The Internet

● The largest distributed system on Earth.
– Nodes heterogeneous
– Nodes autonomous
– Spans many administrative/security domains
– Conventional network interconnections
– Slow communication speed (in general)
– General purpose network protocols
– Works on many problems simultaneously

Clusters

● Supercomputers today are usually clusters of slower, less
expensive machines.
– Nodes homogeneous (approximately)
– Nodes autonomous/specialized (depending)
– One security domain
– Dedicated network
– Fast communication
– Specialized protocols
– All nodes work on the same problem

Local Area Network

● A LAN is a kind of distributed system.
– Nodes homogeneous (although not always)
– Nodes autonomous (clients), specialized (servers)
– One security domain
– Conventional network
– Slow communications
– General purpose protocols
– Nodes work on different problems

Distributed Applications

Middleware Layer

App App App

Kernel Kernel Kernel

+ Operating systems are autonomous.
+ Separate systems integrated by middleware library.
+ Operating system does not “see” distributed system.

Distributed App Frameworks

● Java VM, .NET
– Virtual machine based (homogeneous platform)

● CORBA, Ice, Web services
– Library with standardized communication protocols

● Ada distributed systems annex
– Programming language library (and language constructs)

● PVM, MPI
– Library with server support. MPI is specialized for numerical work and

common on supercomputers.

Distributed Operating System

Application

Kernel Kernel Kernel

+ Kernels communicate to integrate themselves into a single system.
+ Application does not “see” the distributed operating system.
+ Application sees illusion of a single machine.

Illusion of a Single Machine

● The distributed OS ideal
– Single log on
– Single file system
– Single process ID space
– Single I/O space (all I/O devices look local)
– Single job management (migration?)
– Single network presence
– Single memory space (distributed shared memory)

● Some of these features are still research topics.

Distributed OS Examples

● Many systems have some distributes features.
● QNX

– Allows common access to I/O devices
– Has network transparent IPC

● Linux clusters
– Beowulf http://www.beowulf.org/

● Plan9
– Experimental OS from Bell Labs
– http://plan9.bell-labs.com/plan9/

http://www.beowulf.org/
http://plan9.bell-labs.com/plan9/

Security Domains

● Easier if there is only one security domain
– Single authority for account information; makes access control easier.
– Easier to enforce policy and configuration choices over the

distributed system.
● Multiple domains are more interesting!

– Some resources are owned by foreign domains.
– Very large systems inevitably span security domains.

Node Availability

● Nodes always on.
– Simplifies integration

● Unified file system
● I/O devices always available
● Node's memory always available

– Simplifies programming
● Number of nodes fixed and known ahead of time.

● Nodes turn off and on.
– Must migrate resources in use before shutdown.
– Programs must adapt to the number of nodes.
– Ideally the OS would take care of these things!

Network Availability

● Conventional networks.
– Sometimes fail

● Distributed system is partitioned.
● Nodes must cope with being isolated now and then.

– Variable performance
● High traffic (from other sources) interferes with system.

● Dedicated networks.
– More reliable.
– More uniform performance.
– Better potential performance.

Resource Availability

● Specialized resources
– Unusual I/O devices
– Unusual external hardware connected to a distinguished node

(sensor, controller, etc)
– Unusual computational resources (co-processors, video cards, etc).

● Systems based on homogeneous nodes
– Can have problems coping with specialized resources.
– Workaround: Master/slaves configuration

● Master has all unique I/O devices. Slaves just compute.

Process Migration

● Defn: Moving a process between nodes.
● Why do it?

– Load balancing
– Communication performance

● Move the process to the data

– Availability
● Move a process before shutting down a system

– Access to specialized resources
● Move a process to the resource

Who Decides to Migrate?

● User
– Issues commands to move process.

● Assumes the user knows what he/she is doing.

● Application
– Program calls API requesting to be moved.

● Requires a way for the program to query configuration.

● Operating System
– Decision is automatic

● Most difficult to do well.

Migration and IPC

A

A

Before

After

IPC must be network transparent

Migration is Hard

● Move entire address space?
– Demand paging over the network?

● Move OS state information about process.
● Save to disk and then page from file over net?
● What about queued messages and signals?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

