Distributed Operating Systems

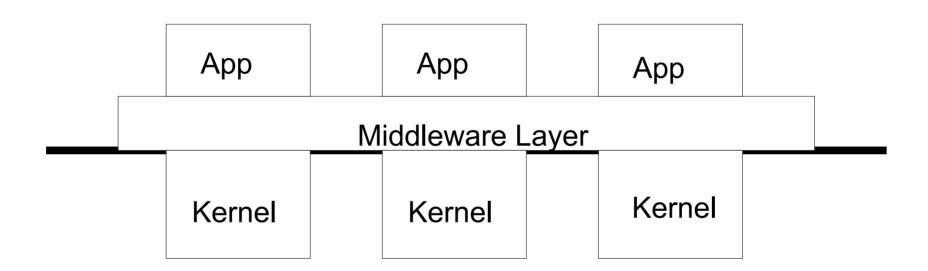
Peter Chapin Vermont State University

Distributed Characteristics

- Node Characteristics
 - Heterogeneous or homogeneous?
 - Autonomous or specialized?
 - One security domain or many domains?
- Communication
 - Conventional network or dedicated network?
 - Slow communication or fast communication?
 - General protocols or specialized protocols?
- Applications
 - Nodes work on same problem or many problems?

The Internet

- The largest distributed system on Earth.
 - Nodes heterogeneous
 - Nodes autonomous
 - Spans many administrative/security domains
 - Conventional network interconnections
 - Slow communication speed (in general)
 - General purpose network protocols
 - Works on many problems simultaneously

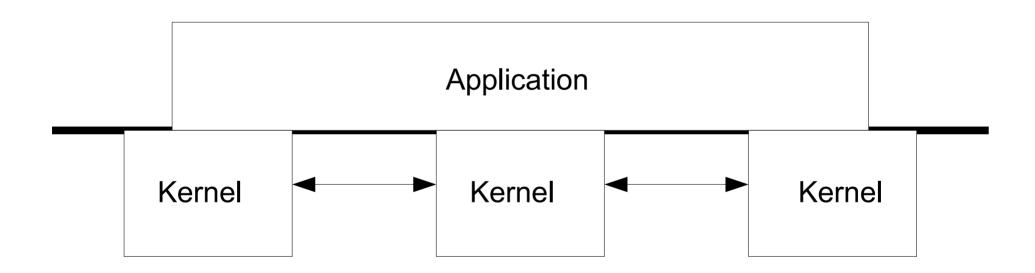

Clusters

- Supercomputers today are usually clusters of slower, less expensive machines.
 - Nodes homogeneous (approximately)
 - Nodes autonomous/specialized (depending)
 - One security domain
 - Dedicated network
 - Fast communication
 - Specialized protocols
 - All nodes work on the same problem

Local Area Network

- A LAN is a kind of distributed system.
 - Nodes homogeneous (although not always)
 - Nodes autonomous (clients), specialized (servers)
 - One security domain
 - Conventional network
 - Slow communications
 - General purpose protocols
 - Nodes work on different problems

Distributed Applications



- + Operating systems are autonomous.
- + Separate systems integrated by middleware library.
- + Operating system does not "see" distributed system.

Distributed App Frameworks

- Java VM, .NET
 - Virtual machine based (homogeneous platform)
- CORBA, Ice, Web services
 - Library with standardized communication protocols
- Ada distributed systems annex
 - Programming language library (and language constructs)
- PVM, MPI
 - Library with server support. MPI is specialized for numerical work and common on supercomputers.

Distributed Operating System

- + Kernels communicate to integrate themselves into a single system.
- + Application does not "see" the distributed operating system.
- + Application sees illusion of a single machine.

Illusion of a Single Machine

- The distributed OS ideal
 - Single log on
 - Single file system
 - Single process ID space
 - Single I/O space (all I/O devices look local)
 - Single job management (migration?)
 - Single network presence
 - Single memory space (distributed shared memory)
- Some of these features are still research topics.

Distributed OS Examples

- Many systems have some distributes features.
- QNX
 - Allows common access to I/O devices
 - Has network transparent IPC
- Linux clusters
 - Beowulf http://www.beowulf.org/
- Plan9
 - Experimental OS from Bell Labs
 - http://plan9.bell-labs.com/plan9/

Security Domains

- Easier if there is only one security domain
 - Single authority for account information; makes access control easier.
 - Easier to enforce policy and configuration choices over the distributed system.
- Multiple domains are more interesting!
 - Some resources are owned by foreign domains.
 - Very large systems inevitably span security domains.

Node Availability

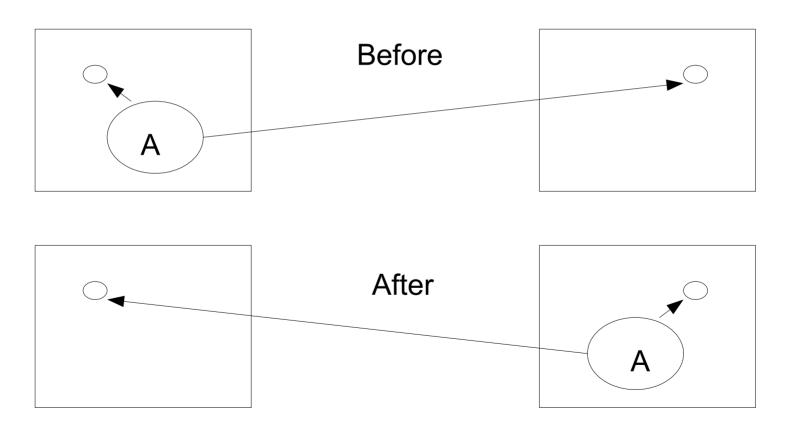
- Nodes always on.
 - Simplifies integration
 - Unified file system
 - I/O devices always available
 - Node's memory always available
 - Simplifies programming
 - Number of nodes fixed and known ahead of time.
- Nodes turn off and on.
 - Must migrate resources in use before shutdown.
 - Programs must adapt to the number of nodes.
 - Ideally the OS would take care of these things!

Network Availability

- Conventional networks.
 - Sometimes fail
 - Distributed system is partitioned.
 - Nodes must cope with being isolated now and then.
 - Variable performance
 - High traffic (from other sources) interferes with system.
- Dedicated networks.
 - More reliable.
 - More uniform performance.
 - Better potential performance.

Resource Availability

- Specialized resources
 - Unusual I/O devices
 - Unusual external hardware connected to a distinguished node (sensor, controller, etc)
 - Unusual computational resources (co-processors, video cards, etc).
- Systems based on homogeneous nodes
 - Can have problems coping with specialized resources.
 - Workaround: Master/slaves configuration
 - Master has all unique I/O devices. Slaves just compute.


Process Migration

- Defn: Moving a process between nodes.
- Why do it?
 - Load balancing
 - Communication performance
 - Move the process to the data
 - Availability
 - Move a process before shutting down a system
 - Access to specialized resources
 - Move a process to the resource

Who Decides to Migrate?

- User
 - Issues commands to move process.
 - Assumes the user knows what he/she is doing.
- Application
 - Program calls API requesting to be moved.
 - Requires a way for the program to query configuration.
- Operating System
 - Decision is automatic
 - Most difficult to do well.

Migration and IPC

IPC must be network transparent

Migration is Hard

- Move entire address space?
 - Demand paging over the network?
- Move OS state information about process.
- Save to disk and then page from file over net?
- What about queued messages and signals?