Distributed Operating Systems

Peter Chapin
Vermont State University

Distributed Characteristics

* Node Characteristics

- Heterogeneous or homogeneous?
— Autonomous or specialized?
— One security domain or many domains?
e« Communication
— Conventional network or dedicated network?
- Slow communication or fast communication?
— General protocols or specialized protocols?
* Applications

- Nodes work on same problem or many problems?

The Internet

* The largest distributed system on Earth.

Nodes heterogeneous

Nodes autonomous

Spans many administrative/security domains
Conventional network interconnections

Slow communication speed (in general)
General purpose network protocols

Works on many problems simultaneously

Clusters

* Supercomputers today are usually clusters of slower, less
expensive machines.

- Nodes homogeneous (approximately)

- Nodes autonomous/specialized (depending)
— One security domain

- Dedicated network

- Fast communication

— Specialized protocols

— All nodes work on the same problem

Local Area Network

* ALAN is a kind of distributed system.

Nodes homogeneous (although not always)
Nodes autonomous (clients), specialized (servers)
One security domain

Conventional network

Slow communications

General purpose protocols

Nodes work on different problems

Distributed Applications

App App App
Middleware Layer
Kernel Kernel Kernel

+ Operating systems are autonomous.
+ Separate systems integrated by middleware library.

_

+ Operating system does not “see” distributed system.

Distributed App Frameworks

Java VM, .NET

- Virtual machine based (homogeneous platform)
CORBA, Ice, Web services

— Library with standardized communication protocols
Ada distributed systems annex

- Programming language library (and language constructs)

PVM, MPI

— Library with server support. MPI is specialized for numerical work and
common on supercomputers.

Distributed Operating System

Application

Kernel ™ > Kernel > Kernel

+ Kernels communicate to integrate themselves into a single system.
+ Application does not “see” the distributed operating system.
+ Application sees illusion of a single machine.

lllusion of a Single Machine

e The distributed OS ideal

Single log on

Single file system

Single process ID space

Single I/O space (all I/O devices look local)

Single job management (migration?)

Single network presence

Single memory space (distributed shared memory)

* Some of these features are still research topics.

Distributed OS Examples

Many systems have some distributes features.

QNX

- Allows common access to I/O devices
- Has network transparent IPC

Linux clusters
- Beowulf http://www.beowulf.org/

Plan9

- Experimental OS from Bell Labs
- http://plan9.bell-labs.com/plan9/

http://www.beowulf.org/
http://plan9.bell-labs.com/plan9/

Security Domains

Easier if there is only one security domain

- Single authority for account information; makes access control easier.

— Easier to enforce policy and configuration choices over the
distributed system.

Multiple domains are more interesting!

— Some resources are owned by foreign domains.
- Very large systems inevitably span security domains.

Node Availability

* Nodes always on.
- Simplifies integration
 Unified file system

* /O devices always available
* Node's memory always available

- Simplifies programming
* Number of nodes fixed and known ahead of time.
e Nodes turn off and on.

— Must migrate resources in use before shutdown.
- Programs must adapt to the number of nodes.
- Ideally the OS would take care of these things!

Network Availability

e Conventional networks.

- Sometimes fail

* Distributed system is partitioned.
* Nodes must cope with being isolated now and then.

- Variable performance
* High traffic (from other sources) interferes with system.

* Dedicated networks.
— More reliable.
— More uniform performance.
— Better potential performance.

Resource Availability

e Specialized resources

— Unusual I/0O devices

- Unusual external hardware connected to a distinguished node
(sensor, controller, etc)

- Unusual computational resources (co-processors, video cards, etc).
* Systems based on homogeneous nodes

- Can have problems coping with specialized resources.

- Workaround: Master/slaves configuration
* Master has all unique 1/O devices. Slaves just compute.

Process Migration

Defn: Moving a process between nodes.
Why do it?
- Load balancing
- Communication performance
* Move the process to the data
- Availability
* Move a process before shutting down a system

— Access to specialized resources
* Move a process to the resource

Who Decides to Migrate”?

* User
- Issues commands to move process.
« Assumes the user knows what he/she is doing.
* Application
- Program calls API requesting to be moved.
* Requires a way for the program to query configuration.
* Operating System
— Decision is automatic
* Most difficult to do well.

Migration and |IPC

Before
Oy O
T
After
O | pe

A

IPC must be network transparent

Migration is Hard

Move entire address space?
- Demand paging over the network?
Move OS state information about process.

Save to disk and then page from file over net?
What about queued messages and signals?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

