

Microkernels

Peter Chapin
Vermont State University

Linux is Monolithic

● A single large “executable”
– Every function can call every other function (in principle)

● Except... there are complications with modules.

– Global data is global to the entire kernel.
● Pros

– High efficiency. Different kernel components have direct access to
each other.

● Cons
– Less flexible, less robust.
– Development is complicated.

Microkernels are Different

● Kernel only supports:
– Thread scheduling.
– A fast method of IPC (Interprocess Communication).
– Interrupt entry points.

● All other functions are in ordinary processes:
– Device drivers
– File systems
– Network protocols
– Memory management algorithms

Microkernel Pros

● Flexible
– All components modularized for easy mix-n-match.
– Distribution over a network “for free.”
– Development is easier.

● Components can be written in any language.
● Built and debugged with ordinary development tools.

● Robust
– Failure of one component is isolated.
– Microkernel is easier to verify.
– Constrained systems are straightforward to configure.

Microkernel Cons

● Slow
– When components communicate, many user/kernel transitions occur

as messages are sent back and forth through the microkernel.
– Lots of overhead!

● Show stopper for many users.
– Most experimental systems are microkernel based.
– Most commercial systems are monolithic.

QNX

● QNX is a commercial microkernel system.
– Targets embedded market.

● High modularity is important.
● Robustness is important.

– Could, in the past, be used as a desktop system.
– Source code for kernel recently published.

● Implements the POSIX API
– Non-trivial: kernel only understands messages.

● Also offers real time support (separate slides!)

POSIX Support on QNX

Kernel

Application File System

POSIX Library Resource Manager

read()

Code that reads files

Low Level Access on QNX

Kernel

File System Block Device Driver

Code that manipulates
hardware

Serial Driver Lab

● You will write a driver for the serial port.
– Interact with Resource Manager interface.

● Allows your driver to be accessed via POSIX functions open(), read(), etc,
from other processes.

– Interact with the 16550 UART.
● Configure hardware.
● Handle interrupts.

● Driver is multi-threaded
– One thread to manage UART.
– One thread to wait for messages.

Serial Driver Block Diagram

Kernel

Resource Manager

Message Handler UART Handler

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

