Microkernels

Peter Chapin
Vermont State University



Linux i1s Monolithic

* Asingle large “executable”

— Every function can call every other function (in principle)
* Except... there are complications with modules.
— Global data is global to the entire kernel.

e Pros

— High efficiency. Different kernel components have direct access to
each other.

e Cons

- Less flexible, less robust.
- Development is complicated.



Microkernels are Different

* Kernel only supports:

— Thread scheduling.
- Afast method of IPC (Interprocess Communication).
— Interrupt entry points.
* All other functions are in ordinary processes:
— Device drivers
- File systems
- Network protocols
- Memory management algorithms



Microkernel Pros

* Flexible

- All components modularized for easy mix-n-match.
— Distribution over a network “for free.”

- Development is easier.

« Components can be written in any language.
* Built and debugged with ordinary development tools.

* Robust
— Failure of one component is isolated.
— Microkernel is easier to verify.
- Constrained systems are straightforward to configure.



Microkernel Cons

 Slow

- When components communicate, many user/kernel transitions occur
as messages are sent back and forth through the microkernel.

- Lots of overhead!
* Show stopper for many users.

- Most experimental systems are microkernel based.
- Most commercial systems are monolithic.



QNX

* QNXis a commercial microkernel system.

- Targets embedded market.

* High modularity is important.
* Robustness is important.

— Could, in the past, be used as a desktop system.
— Source code for kernel recently published.

* Implements the POSIX API
— Non-trivial: kernel only understands messages.
* Also offers real time support (separate slides!)



POSIX Support on QNX

Application

v

read()
POSIX Library

File System

Code that reads files

!

Resource Manager
v

N

Kernel




Low Level Access on QNX

File System Block Device Driver

Code that manipulates
hardware

Kernel




Serial Driver Lab

* You will write a driver for the serial port.

- Interact with Resource Manager interface.

 Allows your driver to be accessed via POSIX functions open(), read(), etc,
from other processes.

- Interact with the 16550 UART.

* Configure hardware.
* Handle interrupts.

 Driver is multi-threaded

— One thread to manage UART.
— One thread to wait for messages.



Serial Driver Block Diagram

Message Handler UART Handler

B

Resource Manager

Kernel




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

