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Linux i1s Monolithic

* Asingle large “executable”

— Every function can call every other function (in principle)
* Except... there are complications with modules.
— Global data is global to the entire kernel.

e Pros

— High efficiency. Different kernel components have direct access to
each other.

e Cons

- Less flexible, less robust.
- Development is complicated.



Microkernels are Different

* Kernel only supports:

— Thread scheduling.
- Afast method of IPC (Interprocess Communication).
— Interrupt entry points.
* All other functions are in ordinary processes:
— Device drivers
- File systems
- Network protocols
- Memory management algorithms



Microkernel Pros

* Flexible

- All components modularized for easy mix-n-match.
— Distribution over a network “for free.”

- Development is easier.

« Components can be written in any language.
* Built and debugged with ordinary development tools.

* Robust
— Failure of one component is isolated.
— Microkernel is easier to verify.
- Constrained systems are straightforward to configure.



Microkernel Cons

 Slow

- When components communicate, many user/kernel transitions occur
as messages are sent back and forth through the microkernel.

- Lots of overhead!
* Show stopper for many users.

- Most experimental systems are microkernel based.
- Most commercial systems are monolithic.



QNX

* QNXis a commercial microkernel system.

- Targets embedded market.

* High modularity is important.
* Robustness is important.

— Could, in the past, be used as a desktop system.
— Source code for kernel recently published.

* Implements the POSIX API
— Non-trivial: kernel only understands messages.
* Also offers real time support (separate slides!)



POSIX Support on QNX
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Low Level Access on QNX
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Serial Driver Lab

* You will write a driver for the serial port.

- Interact with Resource Manager interface.

 Allows your driver to be accessed via POSIX functions open(), read(), etc,
from other processes.

- Interact with the 16550 UART.

* Configure hardware.
* Handle interrupts.

 Driver is multi-threaded

— One thread to manage UART.
— One thread to wait for messages.



Serial Driver Block Diagram
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