POSIX File Systems

Peter Chapin Vermont State University

What is an (Old-Style) Disk Partition?

- Holds raw data in sectors
 - Multiple platters (usually two sided)
 - On each platter are multiple tracks
 - Corresponding tracks on each platter form a cylinder
 - One head for each surface (typically two per platter)
- Three dimensions
 - (head, cylinder, sector)
- Sectors are small
 - Typically 512 bytes

Disk Driver

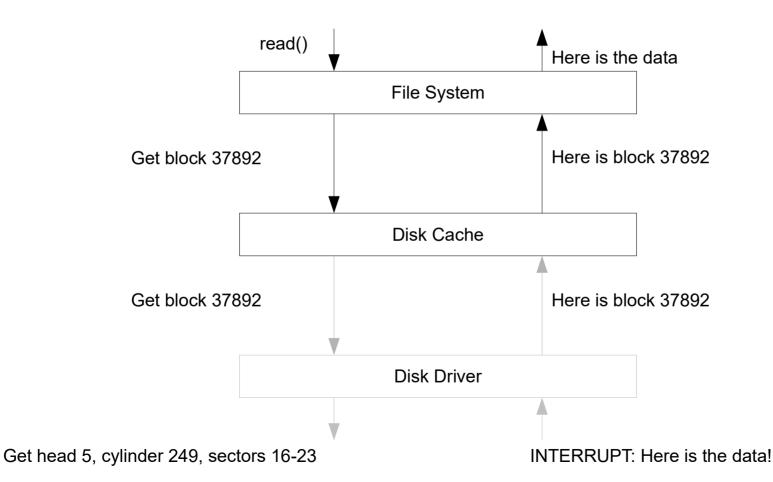
- Driver presents simple model
 - Partition appears as a large array of blocks.
 - Each block typically multiple sectors (say, 8 sectors for a total of 4096 bytes)
 - Driver translates a block number into disk coordinates.
 - e.g., block 37892 => starts at (head 5, cylinder 249, sector 16)
 - Driver accepts request for a particular block...
 - Controls the disk hardware to access appropriate sectors.

Driver Concerns

- The disk driver wants to optimize disk access
 - Requests for blocks sit in a queue
 - Driver chooses requests in some optimal way
 - Not necessarily FIFO order
 - May choose requests that are "close" to the heads' present position
 - Much can be said about this... not an issue for right now
- Higher levels of the OS request blocks from the driver!

SSD vs HDD

- Many modern systems use solid-state drives (SSDs)
 - Underlying electronics is quite different
 - More like an array of blocks in actuality
- The driver still presents the "array of blocks" abstraction to higher-level software
- More general to refer to storage devices rather than drives
 - Many people still say "drive" or "disk"


Disk or Partition?

- Disk is sliced into partitions
 - A table on the disk describes their size and extent
 - Driver understands (disk, partition, block#) coordinates
 - Specifies a disk block uniquely on the system
 - Driver changes the block number into (head, cylinder, sector) coordinates.
- Disk drivers number blocks on each partition.
 - Block 37892 on partition 0 is different than block 37892 on partition 1.

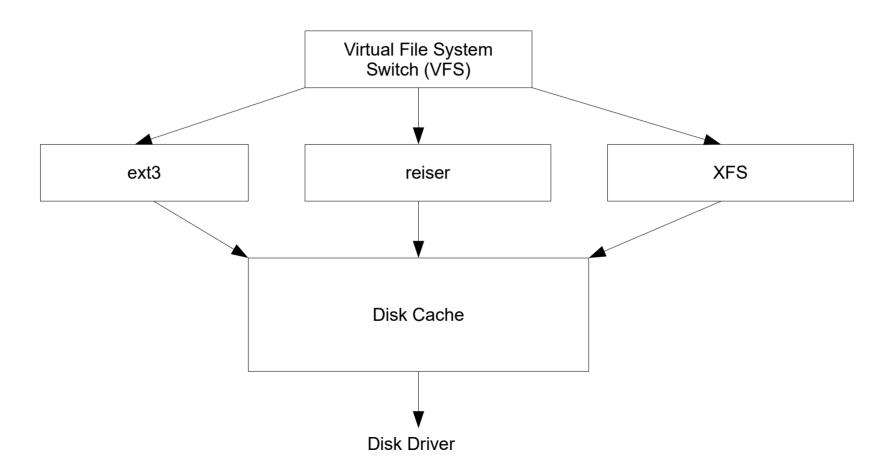
What About Files?

- Applications deal with files
 - Descriptive names: /home/pchapin/afile.txt
 - Orgainzed in a tree hierarchy
 - Variable size
 - How does a command like "read 1024 bytes from /home/pchapin/afile.txt" get converted into "read block #37892?"
- The file system does it!
 - The file system is the part of the OS that understands files and talks to the disk driver.

File System Organization

File System Layout

- File systems control the layout of files on disk
 - Different file systems do it differently
 - Many interesting issues come up
 - Optimizations
 - ... for a large number of small files
 - ... for very large files
 - ... for random access
 - ... for sequential access
 - File system limits
 - How big is the largest file?
 - How large a partition can be used?
 - How long can file names be?


File System Features

- Many features are commonly supported
 - Journals
 - Access control lists
 - Encryption
 - Data compression
 - Extended attributes
 - Versioning
 - And more!
- We will talk about some of these features

Example

- Application says "open /home/pchapin/afile.txt"
 - File system driver must...
 - Locate root directory on disk. Read it
 - Interpret contents of root directory. Look for "home"
 - Locate / home on disk. Read it
 - Interpret contents of /home. Look for "pchapin"
 - Locate /home/pchapin on disk. Read it
 - Interpret contents of /home/pchapin. Look for afile.txt
 - If afile.txt exists and has appropriate access settings... SUCCESS!
 - File system driver knows where file system structures are and what they look like.

Multiple File System Types

VFS

- In Linux the VFS dispatches requests to an appropriate file system driver
 - Depending on which file is being used...
 - VFS computes which partition the file is on using the system mount points that are active
 - Knows which file system type is on each partition
 - Calls into appropriate file system driver
- The cache and driver know nothing about this
 - They deal with raw disk blocks
 - Don't care about file system layout issues

Basic POSIX Layout Concepts

- Superblock
 - Special block that contains information about the file system layout
- i-nodes ("index nodes")
 - Small data structure containing file metadata
- Free map(s)
 - Tracks which blocks or inodes are available
- Files
- Directories

Superblock

- Contains information about the file system as a whole
 - File system type
 - Size and/or location of other data structures
- Allows the file system driver to manipulate different sized instances of a file system
 - e.g., ext3 on a 100 MiB partition vs a 10 GiB partition
- Sometimes duplicated on the disk for backup purposes
 - If the superblock becomes unreadible, the entire file system is destroyed

I-Nodes

- One i-node for every file and directory
 - Contains metadata (except for the file name)
 - Exact size in bytes
 - Needed since the last block of the file is partially filled
 - Permissions
 - Owner and group association
 - Number of links
 - A file can appear in multiple directories
 - Information for finding the file contents
- Number of i-nodes fixed when disk formatted?
 - Not necessarily! Advanced systems allow dynamic allocation

Free Maps

- Where is the free space?
 - Must track which blocks are used
 - Typically a "free map" uses a single bit to represent a block
 - If the bit is clear the block is free. If the bit is set the block is used
 - Must track which inodes are used
 - Another free map used to track i-nodes the same way

Files

- The i-node contains information about file
 - Block #s of the first part of the file stored directly in the i-node
 - BUT... the i-node is small so not many block #s will fit
 - Block # of a block full of block numbers
 - Called the first indirection pointer
 - Block # of a block full of first indirection pointers
 - Called the second indirection pointer
 - Block # of a block full of second indirection pointers
 - Called the third indirection pointer
- See GenericFS documentation for details!

Directories

- Directories are like files
 - Just a large array of bytes
 - Managed like files internally
- Contain a list of (name, i-node) associations
 - For each file named, the i-node controlling that file is specified
 - When a file is opened the i-node is brought into kernel memory
 - The name of the file is not important after that

Tools (ls)

To view the i-node numbers use the -i option with ls

```
pchapin@lemuria:~/Projects/GenericFS/doc$ ls -i
655666 Compiling-Linux.tex 655715 doc-Implementation.tex
655668 DevBox-HackBox.tex 655934 doc-Preliminaries.tex
655696 doc-GenericFS-Structure.tex 655669 Figures
```

This is a directory.

Directories are a special kind of file and also have i-node numbers

Tools (stat)

 The stat program dumps the information in the i-node except for the information about how to locate the file on disk.