

POSIX File Systems

Peter Chapin
Vermont State University

What is an (Old-Style) Disk Partition?

● Holds raw data in sectors
● Multiple platters (usually two sided)
● On each platter are multiple tracks

– Corresponding tracks on each platter form a cylinder
● One head for each surface (typically two per platter)

● Three dimensions
● (head, cylinder, sector)

● Sectors are small
● Typically 512 bytes

Disk Driver

● Driver presents simple model
● Partition appears as a large array of blocks.

– Each block typically multiple sectors (say, 8 sectors for a total of 4096 bytes)
● Driver translates a block number into disk coordinates.

– e.g., block 37892 => starts at (head 5, cylinder 249, sector 16)
● Driver accepts request for a particular block...

– Controls the disk hardware to access appropriate sectors.

Driver Concerns

● The disk driver wants to optimize disk access
● Requests for blocks sit in a queue
● Driver chooses requests in some optimal way

– Not necessarily FIFO order
– May choose requests that are "close" to the heads' present position

● Much can be said about this... not an issue for right now
● Higher levels of the OS request blocks from the driver!

SSD vs HDD

● Many modern systems use solid-state drives (SSDs)
● Underlying electronics is quite different
● More like an array of blocks in actuality

● The driver still presents the "array of blocks" abstraction to
higher-level software

● More general to refer to storage devices rather than drives
● Many people still say "drive" or "disk"

Disk or Partition?

● Disk is sliced into partitions
● A table on the disk describes their size and extent
● Driver understands (disk, partition, block#) coordinates

– Specifies a disk block uniquely on the system
● Driver changes the block number into (head, cylinder, sector)

coordinates.
● Disk drivers number blocks on each partition.

● Block 37892 on partition 0 is different than block 37892 on partition 1.

What About Files?

● Applications deal with files
● Descriptive names: /home/pchapin/afile.txt
● Orgainzed in a tree hierarchy
● Variable size
● How does a command like "read 1024 bytes from

/home/pchapin/afile.txt" get converted into "read block
#37892?"

● The file system does it!
● The file system is the part of the OS that understands files and talks

to the disk driver.

File System Organization

File System

Disk Cache

Disk Driver

read()

Get block 37892

Get block 37892

Get head 5, cylinder 249, sectors 16-23 INTERRUPT: Here is the data!

Here is block 37892

Here is block 37892

Here is the data

File System Layout

● File systems control the layout of files on disk
● Different file systems do it differently
● Many interesting issues come up

– Optimizations
● ... for a large number of small files
● ... for very large files
● ... for random access
● ... for sequential access

– File system limits
● How big is the largest file?
● How large a partition can be used?
● How long can file names be?

File System Features

● Many features are commonly supported
– Journals
– Access control lists
– Encryption
– Data compression
– Extended attributes
– Versioning
– And more!

● We will talk about some of these features

Example

● Application says "open /home/pchapin/afile.txt"
● File system driver must...

– Locate root directory on disk. Read it
– Interpret contents of root directory. Look for "home"
– Locate /home on disk. Read it

– Interpret contents of /home. Look for "pchapin"

– Locate /home/pchapin on disk. Read it

– Interpret contents of /home/pchapin. Look for afile.txt

– If afile.txt exists and has appropiate access settings... SUCCESS!

● File system driver knows where file system structures are and what
they look like.

Multiple File System Types

Virtual File System
Switch (VFS)

ext3 reiser XFS

Disk Cache

Disk Driver

VFS

● In Linux the VFS dispatches requests to an appropriate file
system driver

● Depending on which file is being used...
– VFS computes which partition the file is on using the system mount points

that are active
– Knows which file system type is on each partition
– Calls into appropriate file system driver

● The cache and driver know nothing about this
● They deal with raw disk blocks
● Don't care about file system layout issues

Basic POSIX Layout Concepts

● Superblock
● Special block that contains information about the file system layout

● i-nodes ("index nodes")
● Small data structure containing file metadata

● Free map(s)
● Tracks which blocks or inodes are available

● Files
● Directories

Superblock

● Contains information about the file system as a whole
● File system type
● Size and/or location of other data structures

● Allows the file system driver to manipulate different sized
instances of a file system

● e.g., ext3 on a 100 MiB partition vs a 10 GiB partition
● Sometimes duplicated on the disk for backup purposes

● If the superblock becomes unreadible, the entire file system is
destroyed

I-Nodes

● One i-node for every file and directory
● Contains metadata (except for the file name)

– Exact size in bytes
● Needed since the last block of the file is partially filled

– Permissions
– Owner and group association
– Number of links

● A file can appear in multiple directories
– Information for finding the file contents

● Number of i-nodes fixed when disk formatted?
● Not necessarily! Advanced systems allow dynamic allocation

Free Maps

● Where is the free space?
● Must track which blocks are used

– Typically a "free map" uses a single bit to represent a block
● If the bit is clear the block is free. If the bit is set the block is used

● Must track which inodes are used
– Another free map used to track i-nodes the same way

Files

● The i-node contains information about file
● Block #s of the first part of the file stored directly in the i-node

– BUT... the i-node is small so not many block #s will fit
● Block # of a block full of block numbers

– Called the first indirection pointer
● Block # of a block full of first indirection pointers

– Called the second indirection pointer
● Block # of a block full of second indirection pointers

– Called the third indirection pointer

● See GenericFS documentation for details!

Directories

● Directories are like files
● Just a large array of bytes
● Managed like files internally

● Contain a list of (name, i-node) associations
● For each file named, the i-node controlling that file is specified
● When a file is opened the i-node is brought into kernel memory
● The name of the file is not important after that

Tools (ls)

● To view the i-node numbers use the -i option with ls

pchapin@lemuria:~/Projects/GenericFS/doc$ ls -i
655666 Compiling-Linux.tex 655715 doc-Implementation.tex
655668 DevBox-HackBox.tex 655934 doc-Preliminaries.tex
655696 doc-GenericFS-Structure.tex 655669 Figures

This is a directory.
Directories are a special kind of file and also have i-node numbers

Tools (stat)

● The stat program dumps the information in the i-node except
for the information about how to locate the file on disk.

pchapin@lemuria:~/cis-4020$ stat readme.txt
 File: readme.txt
 Size: 2322 Blocks: 8 IO Block: 4096 regular file
Device: fd00h/64768d Inode: 28573718 Links: 1
Access: (0664/-rw-rw-r--) Uid: (1000/ pchapin) Gid: (1000/ pchapin)
Access: 2024-10-22 11:11:17.209971399 -0400
Modify: 2024-10-22 11:11:16.881954633 -0400
Change: 2024-10-22 15:03:56.687710599 -0400
 Birth: 2024-10-21 11:49:53.333608251 -0400

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

