Scheduling

Peter Chapin
Vermont State University
C1S-4020, Operating Systems



What is Scheduling?

* When a thread is suspended...

* Kernel must decide which thread gets to run next.

— Only runnable threads considered: most threads are blocked most of the
time.

 |ssues to consider
— Thread priority

— Thread history

* Interactive threads usually given attention ASAP on the theory that they will probably
block again quickly.

* This keeps the user interface responsive.
— Number of processors

» Often desirable to schedule a thread on the same processor it was using in the past.



CPU vs I/O

* Threads alternate between using the CPU and doing I/O.

e Here "I/O" also covers the case where a thread waits for another
thread.

* Waiting to acquire a lock.
* Waiting for another thread to terminate.

 CPU Burst. Time spent running on the CPU
* [/O Burst. Time spent waiting for "I/O"

e Scheduling is only concerned with threads that can use the
CPU

- That s, threads involved in or about to start a CPU burst.



Single CPU, Single Queue

CPU

— >
Terminates

> Queue of Runnable Jobs >
Preempt (Time Quantum Expires)
Explicit Yield
Waiting ¢
I/O Completes Blocks on 1/O




Run Queue

The queue of runnable jobs is called the run queue or wait
queue.

Scheduling problem:

 When the CPU is idle because executing job...
- ... terminated...
- ... blocks on |/O...
- ... Is preempted...
- ... explicity yielded the processor...
e ... which job from the run queue should be selected next?
— This is the essence of the scheduling problem.



Run Queue Empty?

* If the run queue is empty (surprisingly common)

« CPU idles
* Most modern systems actually shut it off (in effect)!

Doing so conserves energy and keeps the system cooler.

 CPU turned back on by the next interrupt.

If no jobs can run, the only thing that can happen next is a prior 1/O request
completing.
Hardware will generate an interrupt when that occurs.

Interrupt service routine will wake up some process, giving the scheduler
something to think about.



Run Queue Not Empty

* If the run queue is not empty...

« Several algorithms exist for selecting the next job. Basics include...
- FCFS (First Come First Served; also called First In First Out: FIFO)

* Executes jobs in the order in which they were entered into the run queue.
- SJN (Shortest Job Next)

* Executes the shortest job next regardless of order in run queue.
* Requries a way to predict which will be the shortest.

— SRT (Shortest Remaning Time)

* Similar to SJN.
* Preempt current job if something shorter arrives on the queue.



Job Time

Here "Job Time" means the time of the next CPU burst.

 Example: Jobs A, B, C in the queue in that order.

- A's next CPU burst will be 3.7 ms
- B's next CPU burst will be 9.8 ms
- (C's next CPU burst will be 2.5 ms

* |nthat case...
- FCFS chooses A (at the head of the queue)

- SJN chooses C

- SRT chooses C as well, but will replace job on the CPU if something shorter
is added to the queue while C is running (note: C's burst will be shorter by

then too).



CPU Bound

 Some jobs have very long CPU bursts
* Lasting minutes, days, months...
* Typically split into time quantums and preempted periodically.

- For example, every 10 ms.
- Some systems adjust time quantum size dynamically.

* Scheduler may assume next CPU burst is the size of the time
quantum.

* But may also take into account history.

- If a job uses its entire quantum every time it runs, it may be penalized (get a
forced priority reduction).



Turn Around Time

 Normalized Turn Around Time, T,

 T.=(TimelnQueue + TimeExecuting) / TimeExecuting
« Example: 18.5 ms in run queue. 2.7 ms executing.
- T.=(185+27)2.7=7.85
* Low T, is good.
- ldeally T, = 1.0 (zero time in the run queue).
* Average Normalized Turn Around Time...

* Afigure of merit for a scheduler.

- Average of T, across every job. You want 1.0.



FCFS

 First Come First Served

* Easy to implement.
— Scheduler pulls job from the front of the queue. Done.
 Lousy average T,

- Problem: Short jobs that wait experience a huge T,
* (250 ms + 1 ms)/ 1ms = 250

— McDonalds: You walk in behind a bus load of people who each order a huge
meal. You just want a soda.

« FCFSisfair.
- Everyone will get a turn... eventually.



SJN

 Shortest Job Next

* Scan the queue looking for the job with the shortest estimated
service time. Run it immediately.

* Much better average T,

- Short jobs don't have to wait.

- "You just want a soda? Come to the head of the line!"
* Long jobs might starve.

- At McDonald's starvation might be literal!
- Not always fair.



Estimated Service Time

SJN requires estimates of a job's service time.

 Use past behavior.

* Processes burst on the CPU then sleep.

— Build up a history of a process's CPU burst durations.
— Use that history to form guess of future behavior.

- Not always accurate (of course)

- Often very close.

» Different ways to compute estimate can produce different estimates
- ... can change the performance of basic SJN scheduling.



Real Operating Systems

* Real systems are more complex.

* Multiple queues... one for each priority.

Typically pull job from highest priority non-empty queue.
Only consult lower priority queues if the high priority queue is empty.

Not as bad is it sounds: high priority jobs are typically not CPU bound and
usually are waiting for 1/0O. High priority queues are normally empty.

ALSO... bump up process priority automatically (to avoid starvation of low
priority processes).



Multiple CPUs

Real systems have more than one CPU.

e This doesn't change things much.

 Whenever any CPU is idle, the scheduler steps in to give it
something to do.

— Can use the same basic algorithms.

- Sometimes useful to bind a process to the same CPU (to make use of
memory cache more efficient).

Goal: Keep all CPUs busy all the time.

* Otherwise you are wasting your money!



Linux

* High level overview...

 Scheduler works with schedulable entities.
- Each such entity needs a struct sched entity.

» Such a structure is embedded in the task struct of each task.

— Allows groups of threads to be scheduled as a unit.

* All threads owned by a particular user.
* All threads in a particular process.
* Once the unit is scheduled, then the component tasks can be.

» Different scheduling classes are supported.

"Completely fair scheduler" is the default.
- Also a real-time scheduler to handle SCHED RR and SCHED FIFO policies.

— Each class works independently of the other(s).



Linux

* High level overview (continued)...

« Each CPU has a run queue of its own.

— The CPU run queue tracks total execution time on CPU.
— Contains class-specific run queues for each class.

 Atask is in exactly one run queue.
- Waiting on exactly one CPU.
- Handled by exactly one scheduling class.
* Under special circumstances tasks can change run queues.

- Switch to a different scheduling class.
- Migrate to a different CPU.



Linux

* High level overview (continued)...

 Virtual run time tracked for each task.

- Updated when task pulled from CPU or at each timer tick.
» Timer ticks HZ times per second. Default is 250 (4 ms tick interval).
* Only currently executing tasks (on each CPU) needs updating.

- Weighted by task priority.
* High priority tasks have virtual run times that advance slowly.

* Scheduler believes they haven't run very much and runs them again sooner than
otherwise.

* No time quanta in the usual sense.
— Task preempted from CPU if virtual run time is too high.



Completely Fair Scheduler

* Ensures all tasks get the same (virtual) run time

— High priority tasks get more real time since their virtual run time advances
more slowly.

« Basic idea: Pick the task with the smallest virtual run time to run next.

— Task many not be preempted at each timer interrupt, but it will be preempted
eventually.

- New tasks get more attention because their virtual run times are small
initially.
* Interactive tasks automatically preferred over CPU bound tasks. No special handling of
interactive tasks is necessary.



Real Time Scheduler

* Real time class is independent.

 Threads considered before any CFS threads.
e SCHED FIFO

— Thread runs for as long as it wants. All other threads on the system are
suspended indefinitely.

» Of course such threads should block quickly!
- Important if real time deadlines are to be met.

« SCHED RR (Round Robin)

- Threads switch among themselves, blocking all other threads on the system
indefinitely.

« BUT... there are real time priorities to consider also.



Real Time Priorities

* CFS threads can be temporarly boosted to real time priority...

- Using RT Mutexes.

- Intended to avoid priority inversion.
* See the slide set on locking.

- Still scheduled by the CFS (as | understand it).



CFS Run Queue

 The CFS uses a red black tree for its run queue.

* Sorted in order of increasing virtual run time.
— Okay, not exactly... but this is the general idea.
 Next task to run is the leftmost tree node.

* R/B trees have O(log n) running time for most operations.

e Here 'n'is the number of runnable tasks.

e Older 2.6.x kernels used an O(1) scheduler.

- Now obsolete. Required a lot of special case handling and complex
heuristics.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

