

Scheduling

Peter Chapin
Vermont State University

CIS-4020, Operating Systems

What is Scheduling?

● When a thread is suspended...
● Kernel must decide which thread gets to run next.

– Only runnable threads considered: most threads are blocked most of the
time.

● Issues to consider
– Thread priority
– Thread history

● Interactive threads usually given attention ASAP on the theory that they will probably
block again quickly.

● This keeps the user interface responsive.
– Number of processors

● Often desirable to schedule a thread on the same processor it was using in the past.

CPU vs I/O

● Threads alternate between using the CPU and doing I/O.
● Here "I/O" also covers the case where a thread waits for another

thread.
● Waiting to acquire a lock.
● Waiting for another thread to terminate.

● CPU Burst: Time spent running on the CPU
● I/O Burst: Time spent waiting for "I/O"

● Scheduling is only concerned with threads that can use the
CPU

– That is, threads involved in or about to start a CPU burst.

Single CPU, Single Queue

Queue of Runnable Jobs CPU

Waiting

Preempt (Time Quantum Expires)

Blocks on I/OI/O Completes

Terminates

Explicit Yield

Run Queue

● The queue of runnable jobs is called the run queue or wait
queue.

● Scheduling problem:
● When the CPU is idle because executing job...

– ... terminated...
– ... blocks on I/O...
– ... is preempted...
– ... explicity yielded the processor...

● ... which job from the run queue should be selected next?
– This is the essence of the scheduling problem.

Run Queue Empty?

● If the run queue is empty (surprisingly common)
● CPU idles
● Most modern systems actually shut it off (in effect)!

– Doing so conserves energy and keeps the system cooler.
● CPU turned back on by the next interrupt.

– If no jobs can run, the only thing that can happen next is a prior I/O request
completing.

– Hardware will generate an interrupt when that occurs.
– Interrupt service routine will wake up some process, giving the scheduler

something to think about.

Run Queue Not Empty

● If the run queue is not empty...
● Several algorithms exist for selecting the next job. Basics include...

– FCFS (First Come First Served; also called First In First Out: FIFO)
● Executes jobs in the order in which they were entered into the run queue.

– SJN (Shortest Job Next)
● Executes the shortest job next regardless of order in run queue.
● Requries a way to predict which will be the shortest.

– SRT (Shortest Remaning Time)
● Similar to SJN.
● Preempt current job if something shorter arrives on the queue.

Job Time

● Here "Job Time" means the time of the next CPU burst.
● Example: Jobs A, B, C in the queue in that order.

– A's next CPU burst will be 3.7 ms
– B's next CPU burst will be 9.8 ms
– C's next CPU burst will be 2.5 ms

● In that case...
– FCFS chooses A (at the head of the queue)
– SJN chooses C
– SRT chooses C as well, but will replace job on the CPU if something shorter

is added to the queue while C is running (note: C's burst will be shorter by
then too).

CPU Bound

● Some jobs have very long CPU bursts
● Lasting minutes, days, months...

● Typically split into time quantums and preempted periodically.
– For example, every 10 ms.
– Some systems adjust time quantum size dynamically.

● Scheduler may assume next CPU burst is the size of the time
quantum.

● But may also take into account history.
– If a job uses its entire quantum every time it runs, it may be penalized (get a

forced priority reduction).

Turn Around Time

● Normalized Turn Around Time, Tn

● Tn = (TimeInQueue + TimeExecuting) / TimeExecuting
● Example: 18.5 ms in run queue. 2.7 ms executing.

– Tn = (18.5 + 2.7)/2.7 = 7.85
● Low Tn is good.

– Ideally Tn = 1.0 (zero time in the run queue).

● Average Normalized Turn Around Time...
● A figure of merit for a scheduler.

– Average of Tn across every job. You want 1.0.

FCFS

● First Come First Served
● Easy to implement.

– Scheduler pulls job from the front of the queue. Done.
● Lousy average Tn

– Problem: Short jobs that wait experience a huge Tn

● (250 ms + 1 ms) / 1ms = 250
– McDonalds: You walk in behind a bus load of people who each order a huge

meal. You just want a soda.
● FCFS is fair.

– Everyone will get a turn... eventually.

SJN

● Shortest Job Next
● Scan the queue looking for the job with the shortest estimated

service time. Run it immediately.
● Much better average Tn

– Short jobs don't have to wait.
– "You just want a soda? Come to the head of the line!"

● Long jobs might starve.
– At McDonald's starvation might be literal!
– Not always fair.

Estimated Service Time

● SJN requires estimates of a job's service time.
● Use past behavior.
● Processes burst on the CPU then sleep.

– Build up a history of a process's CPU burst durations.
– Use that history to form guess of future behavior.
– Not always accurate (of course)
– Often very close.

● Different ways to compute estimate can produce different estimates
– ... can change the performance of basic SJN scheduling.

Real Operating Systems

● Real systems are more complex.
● Multiple queues... one for each priority.

– Typically pull job from highest priority non-empty queue.
– Only consult lower priority queues if the high priority queue is empty.
– Not as bad is it sounds: high priority jobs are typically not CPU bound and

usually are waiting for I/O. High priority queues are normally empty.
– ALSO... bump up process priority automatically (to avoid starvation of low

priority processes).

Multiple CPUs

● Real systems have more than one CPU.
● This doesn't change things much.
● Whenever any CPU is idle, the scheduler steps in to give it

something to do.
– Can use the same basic algorithms.
– Sometimes useful to bind a process to the same CPU (to make use of

memory cache more efficient).

● Goal: Keep all CPUs busy all the time.
● Otherwise you are wasting your money!

Linux

● High level overview...
● Scheduler works with schedulable entities.

– Each such entity needs a struct sched_entity.
● Such a structure is embedded in the task_struct of each task.

– Allows groups of threads to be scheduled as a unit.
● All threads owned by a particular user.
● All threads in a particular process.
● Once the unit is scheduled, then the component tasks can be.

● Different scheduling classes are supported.
– "Completely fair scheduler" is the default.
– Also a real-time scheduler to handle SCHED_RR and SCHED_FIFO policies.
– Each class works independently of the other(s).

Linux

● High level overview (continued)...
● Each CPU has a run queue of its own.

– The CPU run queue tracks total execution time on CPU.
– Contains class-specific run queues for each class.

● A task is in exactly one run queue.
– Waiting on exactly one CPU.
– Handled by exactly one scheduling class.

● Under special circumstances tasks can change run queues.
– Switch to a different scheduling class.
– Migrate to a different CPU.

Linux

● High level overview (continued)...
● Virtual run time tracked for each task.

– Updated when task pulled from CPU or at each timer tick.
● Timer ticks HZ times per second. Default is 250 (4 ms tick interval).
● Only currently executing tasks (on each CPU) needs updating.

– Weighted by task priority.
● High priority tasks have virtual run times that advance slowly.
● Scheduler believes they haven't run very much and runs them again sooner than

otherwise.

● No time quanta in the usual sense.
– Task preempted from CPU if virtual run time is too high.

Completely Fair Scheduler

● Ensures all tasks get the same (virtual) run time
– High priority tasks get more real time since their virtual run time advances

more slowly.
● Basic idea: Pick the task with the smallest virtual run time to run next.

– Task many not be preempted at each timer interrupt, but it will be preempted
eventually.

– New tasks get more attention because their virtual run times are small
initially.

● Interactive tasks automatically preferred over CPU bound tasks. No special handling of
interactive tasks is necessary.

Real Time Scheduler

● Real time class is independent.
● Threads considered before any CFS threads.
● SCHED_FIFO

– Thread runs for as long as it wants. All other threads on the system are
suspended indefinitely.

● Of course such threads should block quickly!
– Important if real time deadlines are to be met.

● SCHED_RR (Round Robin)
– Threads switch among themselves, blocking all other threads on the system

indefinitely.
● BUT... there are real time priorities to consider also.

Real Time Priorities

● CFS threads can be temporarly boosted to real time priority...
– Using RT Mutexes.
– Intended to avoid priority inversion.

● See the slide set on locking.
– Still scheduled by the CFS (as I understand it).

CFS Run Queue

● The CFS uses a red black tree for its run queue.
● Sorted in order of increasing virtual run time.

– Okay, not exactly... but this is the general idea.
● Next task to run is the leftmost tree node.

● R/B trees have O(log n) running time for most operations.
● Here 'n' is the number of runnable tasks.
● Older 2.6.x kernels used an O(1) scheduler.

– Now obsolete. Required a lot of special case handling and complex
heuristics.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

