

Lab: Fork Watcher

Peter Chapin
Vermont State University

CIS-4020, Operating Systems

Purpose

● In this lab you will gather information about each time fork is
called.

● The information will be stored in a fixed size circular buffer.
– Old data will be overwritten as new data is added.
– Only information on most recent forks preserved.

● Each record in the buffer is a structure containing interesting fields.
– What constitutes "interesting" is described later.

● Module presents data in a /proc file.

● User mode application formats /proc data.

Reading

● Resources to review...
● The clone manual page.

– Read the whole thing.
● Chapter 3 in Linux Kernel Development by Robert Love.
● The kernel source.

– Especially kernel_clone and copy_process

– Also study the definition of structure task_struct

https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/ch03.html

current

● The macro current evalutes to a pointer to the task_struct
of the current thread.

● Use current->some_member to access members of the current
thread's task_struct.

● The copy_process function allocates and initializes a new
task_struct.

● However, what you need to do in this lab is mostly collect information
about the process doing the fork.

– Can gather that in kernel_clone before anything else happens.
– HOWEVER... must also note success/failure... gathered at the end of

kernel_clone.

What Information?

● What information do we want to collect?
● Clone flags
● Parent user ID
● Parent and child process ID

– Consider taking into account namespace information as well (not required)
● Name of the command from which the process was created

– Must use a helper function to access this properly
● Return value of the clone operation

Circular Buffer

● You need to do the following...
● Define a structure (struct fork_info) to hold the necessary

information.
● Define an array of such structures at global scope in the same file

where kernel_clone is defined.
● Define two global pointers (or index variables):

– One always points at the next available slot in the buffer (next_in)

– One always points at the next item to remove from buffer (next_out)

– When next_in == next_out the buffer is considered empty

put_fork_record

● Signature
● void put_fork_record(const struct fork_info *fi);

● Pseudo-Code
● Put record into next available slot
● Advance next_in with wrap, if necessary

● If next_in now equals next_out, advance next_out with wrap, if
necessary

– This policy causes old data to be lost. This is acceptable in this case.
– Does this work for an empty buffer? How about a full buffer?

get_fork_record

● Signature
● int get_fork_record(struct fork_info *fi);

● Pseudo-code
● If next_in == next_out the buffer is empty

– Return an error code
● Otherwise, copy item at *next_out and advance next_out

forward with wrap, if necessary
● Return the previously copied item

– Does this work for an empty buffer? How about a full buffer?

Program Structure

● The definition of struct fork_info goes in a header file
(fork_info.h)

● This allows it to be #included in both the kernel source and the
module source

● Put fork_info.h with other kernel headers

● Declaration of get_fork_record in the header file
● So the module code can call it
● Don't forget to EXPORT_SYMBOL that function after it is defined

/proc Handling

● Similar to the Counting System Calls lab but trickier. Consider...
● What happens if new records are added while you are formatting

records for display?
– Do you miss any records?
– Do you try to display any records twice?
– Do you display corrupt records?

● We can deal with some issues using locking techniques, but not all.
– What happens if the /proc reading process takes a "long time" to

completely read the /proc file?

– Consider if someone uses less to view the first few records and then walks
away from the system for an hour.

Formatting Requirements

● When outputting the fork records to the /proc file...
● Okay to output raw numbers without headers in a space-delmited or

comma-delimited format
● We can write a user mode application that reads the /proc file

and formats it better:
● Convert clone flags to symbolic names.
● Convert UID values to real user names.

– See getpwuid in the C library.

● Convert return values to real error names.
– include/asm-generic/errno-base.h
– include/asm-generic/errno.h

Locking Issues

● Producer consumer problem?
● Threads that are forking are producers creating fork_infos

– Multiple producers possible (simultaneous forks)
● Threads reading the /proc file are consumers of fork_infos.

– Multiple consumers possible (simultaneous /proc file reads).

● Not quite the same...
– Buffer never "overflows" (old data is overwritten)
– No need for consumer to sleep on empty buffer (just return end-of-file

indication)
● This simplifies things

Lock Hiding

● Our design is good...
● We can hide all locking in

– put_fork_record. All producers use this function to install new items in
the buffer.

– get_fork_record. All consumers use this function to get items from the
buffer.

● Module authors do not need to worry about getting locks right.
– This is good; proper locking can be tricky.
– Question: Will get_fork_record ever sleep? Module authors will want to

know.

Producer Locking

● Actually simple...
● Lock a mutex before touching the buffer to avoid corruption
● No need to reserve a free slot

– There is always space (in effect)
● Just need to be sure the nobody else is touching the buffer at the

same time. For example, we want to avoid:
– Thread A: Install new record at *next_in

– Thread B: Install new record at *next_in (overwrites Thread A's value!)

– Thread A: Advance next_in

– Thread B: Advance next_in (leaves an "empty" slot behind!)
– Oops!!

Consumer Locking

● Also simple...
● Lock mutex before touching the buffer to avoid corruption
● No need to reserve a used slot

– If it turns out the buffer is empty, just return error code
● What kind of problems can occur if there is no locking?

What Kind of Lock?

● We have several to choose from...
● Spin locks

– Can only use if critical section is "short" and never sleeps
● Semaphores, mutexes

– Required if critical section sleeps. More overhead.
● Reader/writer locks

– Appropriate if many threads treat the data as read-only

● And the winner is...
● Spin locks!

– Why?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

