Lab: Fork Watcher

Peter Chapin
Vermont State University
C1S-4020, Operating Systems

Purpose

 In this lab you will gather information about each time fork is
called.

* The information will be stored in a fixed size circular buffer.

- Old data will be overwritten as new data is added.
— Only information on most recent forks preserved.

* Each record in the buffer is a structure containing interesting fields.
— What constitutes "interesting" is described later.
 Module presents data in a /proc file.

« User mode application formats /proc data.

Reading

e Resources to review...

« The clone manual page.
- Read the whole thing.

* Chapter 3 in Linux Kernel Development by Robert Love.

 The kernel source.

- Especially kernel clone and copy process
- Also study the definition of structure task struct

https://learning.oreilly.com/library/view/linux-kernel-development/9780768696974/ch03.html

current

 The macro current evalutes to a pointer to the task struct
of the current thread.

 Use current->some member to access members of the current
thread's task struct.

 The copy process function allocates and initializes a new
task struct.

 However, what you need to do in this lab is mostly collect information
about the process doing the fork.
- Can gather that in kernel clone before anything else happens.

- HOWEVER... must also note success/failure... gathered at the end of
kernel clone.

What Information?

 \What information do we want to collect?

* Clone flags
* Parent user ID
e Parent and child process ID
— Consider taking into account namespace information as well (not required)
 Name of the command from which the process was created
— Must use a helper function to access this properly
* Return value of the clone operation

Circular Buffer

* You need to do the following...

Define a structure (struct fork info)to hold the necessary
information.

Define an array of such structures at global scope in the same file
where kernel clone is defined.
Define two global pointers (or index variables):

- One always points at the next available slot in the buffer (next in)

- One always points at the next item to remove from buffer (next out)

- When next in == next out the buffer is considered empty

put fork record

e Signature

volid put fork record(const struct fork info *fi);

e Pseudo-Code

Put record into next available slot

Advance next in with wrap, if necessary
If next in now equals next out, advance next out with wrap, if
necessary

— This policy causes old data to be lost. This is acceptable in this case.
— Does this work for an empty buffer? How about a full buffer?

get fork record

* Signature
e int get fork record(struct fork info *fi);

e Pseudo-code
* Ifnext in == next out the bufferis empty
— Return an error code

« Otherwise, copy item at *next out and advance next out
forward with wrap, if necessary

* Return the previously copied item
— Does this work for an empty buffer? How about a full buffer?

Program Structure

* The definition of struct fork info goes in a header file
(fork info.h)

« This allows it to be #included in both the kernel source and the
module source

 Put fork info.h with other kernel headers
» Declaration of get fork record inthe header file

* So the module code can call it
« Don't forget to EXPORT SYMBOL that function after it is defined

/proc Handling

Similar to the Counting System Calls lab but trickier. Consider...

 What happens if new records are added while you are formatting
records for display?

— Do you miss any records?
— Do you try to display any records twice?
— Do you display corrupt records?
* We can deal with some issues using locking techniques, but not all.

- What happens if the /proc reading process takes a "long time" to
completely read the /proc file?

— Consider if someone uses less to view the first few records and then walks
away from the system for an hour.

Formatting Requirements

« When outputting the fork records to the /proc file...

* Okay to output raw numbers without headers in a space-delmited or
comma-delimited format

 We can write a user mode application that reads the /proc file
and formats it better:
* Convert clone flags to symbolic names.
e Convert UID values to real user names.
- See getpwuid in the C library.
 Convert return values to real error names.

- include/asm-generic/errno-base.h

- include/asm-generic/errno.h

Locking Issues

* Producer consumer problem?
« Threads that are forking are producers creating fork infos

— Multiple producers possible (simultaneous forks)
« Threads reading the /proc file are consumers of fork infos.

- Multiple consumers possible (simultaneous /proc file reads).

* Not quite the same...

— Buffer never "overflows" (old data is overwritten)
— No need for consumer to sleep on empty buffer (just return end-of-file
indication)

e This simplifies things

Lock Hiding

* QOur designis good...
* We can hide all locking in

- put fork record. All producers use this function to install new items in
the buffer.

- get fork record. All consumers use this function to get items from the
buffer.

* Module authors do not need to worry about getting locks right.
— This is good; proper locking can be tricky.

- Question: Will get fork record ever sleep? Module authors will want to
know.

Producer Locking

* Actually simple...

* Lock a mutex before touching the buffer to avoid corruption

* No need to reserve a free slot
- There is always space (in effect)

* Just need to be sure the nobody else is touching the buffer at the
same time. For example, we want to avoid:

- Thread A: Install new record at *next in

- Thread B: Install new record at *next in (overwrites Thread A's value!)
- Thread A: Advance next in

- Thread B: Advance next in (leaves an "empty" slot behind!)

- Oops!!

Consumer Locking

* Also simple...

* Lock mutex before touching the buffer to avoid corruption

 No need to reserve a used slot
— If it turns out the buffer is empty, just return error code
* What kind of problems can occur if there is no locking?

What Kind of Lock?

 \We have several to choose from...

* Spin locks

— Can only use if critical section is "short" and never sleeps
« Semaphores, mutexes

— Required if critical section sleeps. More overhead.
* Reader/writer locks

- Appropriate if many threads treat the data as read-only

 And the winner is...
e Spin locks!
- Why?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

