
Developing an ROV software control architecture: a 

formal specification approach 

Fabio Henrique de Assis 
Xmobots Sistemas Rob6ticos 

Sao Carlos - Brazil 

Email: thassis@gmail.com 

Fabio Kawaoka Takase 
Atech Neg6cios em Tecnologia SA 

Sao Paulo - Brazil 

Newton Maruyama 

and Paulo Eigi Miyagi 

Departamento de Engenharia Mecatronica 

Escola Politecnica - Universidade de Sao Paulo 

Sao Paulo - Brazil 

Email: fktakase@gmail.com 

Ahstract-
The software development of control architectures for Re­

motely Operated Vehicles (ROVs) is a complex task. The use of 
formal specifications for critical systems can improve both cor­
rectness and completeness of specifications and implementations. 
In this work, a new method for developing control architectures 
based on formal specifications is introduced. The chosen formal 
specification language is the CSP-OZ, a combination of the CSP 
language for behavioral model and the Object-Z language for 
data model. At first, the CSP parts of specifications are verified 
using the FDR2 model checker. Then, CSP-OZ model specifi­
cations are coded using the ADA language. More specifically, 
the ADA language profile Ravenscar for concurrency and the 
SPARK language with its annotations for data modelling are 
used. The SPARK annotations give support for the Object­
Z specifications. Later, the SPARK examiner can be used to 
statically check the code against the annotations. In order to 
illustrate the application of the method, the development of the 
software control architecture of the LAURS ROV is introduced. 
The embedded system is based on a PCI04 Intel x86 running the 
real time operating system Vxworks. 

I. INTRODUCTION 

The development of software control architectures for Re­

motely Operated Vehicles (ROVs) is a complex task. These 

control architectures might be characterized by the following 

attributes: real-time, multitasking, concurrency, and distributed 

over communication networks. In this scenario, there are 

multiple processes running in parallel, possibly distributed, 

and engaging in communication between each other. In this 

context, the behavioral model might lead to phenomena like 

deadlocks, livelocks, race conditions, among others. 

For safety critical systems, the use of formal specifications 

for software development is known to improve software cor­

rectness and completeness for both specifications. This might 

be achieved mainly because formal specifications establish 

models that can be checked using verification tools. A recent 

and extensive survey of the industrial use of formal methods 

are presented in [1]. 

A formal method is composed by a specification language 

and verification tools. The formal specification languages 

are usually classified into two types: behavioural modeling 

languages that describes concurrent processes and their inter­

actions, like CCS [2] and CSP [3], [4]; and data modeling 

Email: maruyama@usp.br.pemiyagi@usp.br 

languages, like VDM [5], Z [6] and Object-Z [7]. Some lan­

guages try to combine both aspects, these includes languages 

like CSP-OZ [8] and Circus [9]. Other methods, like Timed 

Automata [10], allow both behavioral modeling and reasoning 

about time properties. 

The model checking of formal specifications is a task of 

reasoning on software system specifications, in which a tool 

verifies certain properties, by means of an exhaustive search 

of all possible states that a software system could enter during 

its execution. In this context, it is possible to check about 

correctness, liveness, deadlock, etc. 

At first, some related work is reviewed. In [11] a formal 

method based on CSP-OZ is integrated into a software en­

gineering process with UML and the Java programming lan­

guage. A UML profile is developed for the CSP-OZ language. 

CSP models are derived from initial UML models. The Object­

Z part can be transformed into assertions in the Java Modeling 

Language (JML) [12]. Jassda [13] offers trace assertions in a 

CSP-like notation for specifying the required order of method 

calls. The CSP part of the model design is verified using 

the FDR2 model checker [14] and the JML runtime assertion 

checker verifies the model implementation. 

In [15] different techniques are applied that covers from 

requirement analysis to code testing. The key elements are: a 

restricted use of Timed Automata that uses delay and deadline 

to define temporal behavior notions, notions of rely and guar­

antee to cover temporal dependencies, model checking based 

on the UPPAAL verification tool [16], for design verification, 

the SPARK language [l7] that allows annotations and the 

Ravenscar profile [18] for concurrency model, scheduling and 

response time analysis for implementation compliance. 

In this work, a new method for developing software control 

architectures based on formal specifications is introduced. The 

chosen formal specification language is the CSP-OZ language 

[8], [19], a combination of the CSP language for behavioral 

modelling and the Object-Z language for data modelling. 

At first, the CSP parts of specifications are verified using the 

FDR2 model checker [14]. Then CSP-OZ model specifications 

are coded using the ADA language [20]. More specifically, 

the ADA language profile Ravenscar for concurrency and 

the SPARK language with its annotations for data modelling 

978-1-4673-2421-2/12/$31.00 ©2012 IEEE 3107 



[21], [22], [20]. The combination of the Ravenscar profile 

and the SPARK language is usually known as RavenSPARK 

[18]. The SPARK annotations give support for the Object­

Z specifications. Later, the SPARK examiner can be used to 

statically check the code against the annotations. 

In order to illustrate the application of the method, the 

development of the software control architecture of the LAURS 

ROV is provided. The embedded system is based on a PC104 

Intel x86 running the real time operating system Vxworks. 

The paper is organized as follows. Section II details the 

proposed method. Section III introduces the LAURS ROV 

control architecture. Section IV highlights some results on the 

application of the proposed method. Finally, section V draws 

general conclusions. 

II. THE METHOD 

As illustrated in figure 1, the method is composed by three 

steps. The method is detailed in the following sections. More 

detailed information about the method can be found in [23]. 

A. System modeling 

1) System structure diagram: The system structure diagram 

represents model components and their communication in­

teractions. The gCSP [24], a graphical tool for CSP model 

editing, is used for this task. Each component represents an 

independent process which might communicate with others via 

synchronous unidirectional typed channels. 

Channels are named according to the following pattern: 

starLend: type 

where the first part of the name represents the process that 

sends the communication message and the second part repre­

sents the processes that receives it. After the name, the data 

type used by the communication channel is declared after the 

symbol ': '. 

2) Components specification: At this stage, the objective 

is to do a more detailed specification of each process that 

composes the system, including its internal data structure and 

dynamic behaviour. For that, the formal specification language 

CSP-OZ [8], [19], a combination of the process algebra CSP 

with Object-Z (an object-oriented extension of Z). In CSP-OZ, 

processes are described as classes (Class) that have two parts: 

a CSP part and an Object-Z part. 

The CSP part contains the specification of the process 

communication interface together with the process dynamic 

behaviour. The interface includes declarations of all channels 

used by the process, and declarations of the methods described 

in the Object-Z part. When using the CSP-OZ language, 

Object-Z methods are interpreted as internal events of the CSP 

process. The difference between a channel and a method in the 

interface is detached through the use of the reserved words " 

chan", for channels, and" method". 

The main part, indicated by the reserved word "main", 

contains all events that a process might accept, including 

calls on communication channels and internal methods. So, an 

example of specification of a basic behaviour that cyclically 

executes two methods might be: 

main = doSomething -7 doOtherThing -7 

main 

The Object-Z part consists of specification of the internal data 

structure including its associated methods. Internal variables 

with their initial values and internal methods must be declared. 

Methods associated with communication channels must be 

identified using the prefix " COnL" plus the name of the 

channel. For a channel named theChannel there must exist 

a method named cOnLtheChannel in both process related with 

the channel. 

A general class C might be represented by the following 

schema: 

c ______________________________ __ 

1 
P 
Z 

[Interface] 
[CSP Part] 

[OZ Part] 

which can be written horizontally as specs / P Z end. 

In the Interface /, channels and types are declared. P is a 

CSP process and Z is an abstract data type specification using 

Object-Z and is defined by: 

z __________________________________ __ 

st : State 
Init(st) 

[State Space] 
[Initial Condition] 

... COITLc(st, in?, out!, st') ... 
[one schema for each c in I] 

3) Model checking: The graphical tool gCSP exports the 

structure model into CSPM language, which is the language 

of FDR2 model checking tool [14]. The CSPM language is an 

extension of CSP [25]. While using FDR2 it is possible to ver­

ify issues like deadlock, liveness, determinism and refinement 

relationships. There are works [25], [26], [27] that try to check 

the Object-Z part of CSP-OZ models together with the CSP 

part using data structures provided by the CSPM language. In 

this work, only the CSP part is checked using the FDR2 tool. 

B. Model implementation 

In this project, the Ada programming language is adopted 

[20]. The use of ADA is quite widespread in the development 

of software for critical systems. Among the advantages of its 

use are its high legibility, real time prograrmning facilities, 

strong typing and existence of profiles and language subsets 

for critical systems, like the Ravenscar profile and the SPARK 

language [21], [22], [20]. The use of SPARK language together 

with the Ravenscar profile is also known as RavenSPARK 

[18], which consists on the use of the SPARK language 

for sequential code constructs and the Ravenscar profile for 

concurrent programming. 

1) Code generation: In this work, the generation of code 

is done manually. 

The SPARK language and the Ravenscar profile impose 

restrictions related to the use of the Ada language constructs 

3108 



[18], [28], [29]. In this work, the following issues are of 

interest: 

• Use of dynamic allocation, pointers and generic types are 

prohibited; 

• Communication between tasks are restricted to protected 

or atomic objects; 

• Use of select, abort and relative delays inside tasks are 

prohibited; 

Taking into account these restrictions, a set of implemen­

tation rules have been elaborated in order to convert CSP-OZ 

specifications into RavenSPARK. The creation of processes 

and channels are of special interest. Package encapsulation, 

tasks, protected objects and strong typing are the utilised 

concepts. 

The creation rules of processes are: 

• Each process is created as a separate package, that 

contains internal methods and an Ada task, that acts as 

the actual CSP process. This has the same name of the 

package plus the suffix" _task ". 

• The internal methods of each process are created inside 

the package, and not inside the task. This facilitates 

verifications with the SPARK examiner and also reduces 

size and complexity of the task internal code. 

• The internal variables of the processes are located inside 

the task, and not in the package. They are encapsulated 

inside the task, and cannot be accessed directly by other 

tasks in the same way that occurs in the CSP language. 

• All processes execute in infinite loop. This is due to 

the Ravenscar profile that states that task termination is 

considered as a program error. 

For the CSP channels, their implementation using 

RavenSPARK has been developed based on [30]. The 

RavenSPARK channels are composed by two protected ob­

jects: Data that stores the transmitted data through the channel 

SYSTEM MODELING 

Structure Components Model 

Diagram Specification Checking 

and blocks the receiver process; and Sync, that blocks the 

sender process until that the data is received by the other 

process. Based on that, the following implementation rules for 

the CSP channels in RavenSPARK are established: 

• Each channel type demands a different package. By 

convention, the package receives the channel type as part 

of its own name. For example, if the channel is of the 

type integer than the correspondent package type is lnte­

gerChannel. If the channel is of the type message than the 

correspondent package is of the type MessageChannel, 

and so on. 

• The internal data stored in the protected object Data has 

the same type of the channel. 

• Each channel that is presented in the gCSP diagram 

should be created inside the package that represents its 

channel type. In this way, all channels that have the same 

type are created together inside the same package. This is 

due to restrictions imposed by the RavenSPARK profile 

• The name of the channel instances obeys the following 

rule: the prefix is the same name present in the gCSP 

diagram, and the suffix differs for the two components of 

the channel: " _d " for the object of type Data and " _s 

" for the object of type Sync. For instance, for an integer 

channel whose name is myChannel in the gCSP diagram, 

its RavenSPARK implementation will consist on the cre­

ation of two objects : myChanneLd and myChannel...3, 

both created inside the package IntegerChannel. 

• The message sending and receiving are realised via the 

methods put, get, stay and proceed. It works in the 

following way: 

- Inside the task who is transmiting the data someData, 

the code for using the channel would be, for example: 

Ir 

MODEL IMPLEMENTATION 

Code SPARK Implementation 
----. Generation --.. 

Annotations Checking 

� 

TESTS I 
Fig. 1. The proposed method. 

3109 



IntegerChannel. myChannel_d. put (someData); 
send the data 

IntegerChannel. myChannel_s. stay ; 
wait for the reading 

- Inside the task that is receiving the data myData, the 

code for using the channel would be, for example: 

IntegerChannel . myChannel_d. get (myData); 
read the data 

IntegerChannel. myChanneLs. pr ocee d; 
release the sender 

2) SPARK annotations: Annotations are inserted inside the 

code as ADA comments which begins with symbols "--#". The 

piece of code shown above illustrates an example of these 

annotations for the Add procedure. The types of annotations 

include pre-conditions, post-conditions and invariants of vari­

ables and methods, priorities for tasks and protected objects, 

and specifications on the use of variables (reading or writing) 

along the program. More detailed information might be found 

in [17] and [IS]. 

procedure A dd(X: in Integer); 
-# global in out Total; 
-# derives Total from X; 
-# pre X> 0; 
-# post Total = Total- + X; 

Object-Z part specifications can be easily mapped onto 

SPARK annotations. 

3) Implementation checking: Based on the inserted SPARK 

annotations, the SPARK examiner is capable of performing 

static verifications: 

• Check the compliance between the implementation code 

and the SPARK language rules; 

• Check the consistency between the implementation code 

and its annotations, being able to perform data flow 

analysis, control flow analysis or generate verification 

conditions. 

C. Tests 

After the modelling and implementation phases together 

with their respective checking procedures have been per­

formed, tests are made inside the simulation environment of the 

Windrivers Workbench development system. The simulation 

environment emulates an Intel xS6 embedded system architec­

ture running the real time operating system Vxworks. Later, 

tests are conducted in the real hardware which is an Intel xS6 

PC104 system. 

III. THE LAURS CONTROL ARCHITECT URE 

Unmanned underwater vehicles (UUVs) are usually clas­

sified into two categories: the first one is named remotely 

operated vehicles (ROVs). They are connected to a remote 

station (usually inside a vessel) and require direct human 

assistance for all operations, for example, vehicle guidance, 

positioning, manipulator operation, etc. The second one is 

known as autonomous underwater vehicles (AUVs) and are 

Fig. 2. The LAURS ROY. 

characterised by autonomous behaviour and absence of a tether 

cable [31]. 

A holonomic semi-autonomous UUV, named LAURS [32], 

is being developed at the Laboratory of Sensors Actuators at 

the University of Sao Paulo. The LAURS has been conceived 

as having semi-autonomous behaviour, i.e., the vehicle are 

remotely operated but have also an autonomous mode that 

can be used to approach the target. Despite the possibility of 

having an autonomous behaviour, the vehicle is mostly a ROV 

due to is operation characteristics and mechanical design. The 

vehicle has been initially conceived to provide inspection and 

intervention capabilities in specific missions in deep water oil 

fields. 

The vehicle configuration is composed of an aluminum 

tubular structure, I = l.4m x w = 1.2m x h = 0.9m, 

equipped with three pressure vessels of the same dimensions, 

1= 1.0m x d = 0.167m. Its weight in air is about 200Kg and 

the weight-buoyancy force is 35N positive. For description 

convenience, the LAURS is divided into two parts: upper 

and bottom. The upper part of the vehicle contains a layer 

of PVC tubes for buoyancy properties, a pressure vessel 

for the electronics and sensors, and four horizontal thrusters 

(see figure 2). The bottom part of the vehicle consists of 

two pressure vessels that contain batteries and four vertical 

thrusters. Modular structural components allows that LAURS 

can be easily reconfigured in agreement with specific tasks. 

The overall structure of the vehicle is symmetric with respect 

to both the xz and yz planes, and the eight thrusters are 

arranged two by two in the corners, with the horizontal ones 

parallel to the diagonals of the .xy plane. This particular thruster 

configuration enables the full controllability of the vehicle 

motion. 

The development of the architecture follows the hybrid 

paradigm [33]. Two functional layers (See figure 3) are iden­

tified: a deliberative layer, responsible for mission planning 

activities, and a reactive layer, responsible for sensorial and 

motion control activities. 

Processes, that are independent pieces of software, are 

represented by rectangles. Interactions between processes oc-

3110 



baseReader_remote:MESSAGE 
'""--. 

baseReader_autonomous:MESSAG�----' 
s1_move:ControIData 

---

Deliberative Layer 

Reactive Layer 
I Compass 

avoid move:STATUS .----tof 

sensor_baseWriter:MESSAGE 

actuatoUhruster:ActuationData 

Fig. 3. The LAURS control architecture: processes and channels. 

cur via unidirectional synchronous communication channels, 

represented by arrows. Channel names are chosen to indi­

cate the message flow direction together with its data type: 

starLend:type. The processes Compass, Altimeter and Sonar 

do not possess any communication channels. Readings of their 

associated sensors are stored on a data structure named Black­

Board that serve as an asynchronous exchange of information. 

I V. EXPERIMENTA L  RESULT S 

The CSPM script generated based on the CSP-OZ model 

is checked in FDR2 for concurrency issues like deadlocks, 

Iivelocks and determinism. These tests must be conducted for 

the complete system, i.e. considering all modules and their 

interactions. 

The process named ROV_ControLModule (which represents 

the whole system) is tested successfully regarding the existence 

of deadlocks, livelocks and determinism. It is important to 

emphasize that the system under analysis is of considerable 

size, which indicates that the proposed modeling method 

allows that larger systems can be analyzed. According to 

the output report obtained from the tool, the system has the 

following complexity: 

• Number of States: 2,519,424 

• Number of Transitions: 23,549,616 

It is observed that the number of system states is quite 

large, which makes impossible to conduct a manual analysis 

of its state machine. Even with large number of states, as 

can be observed in table I, the time spent with the analyses 

is relatively short. The analysis of determinism is the largest 

one, taking a little less than one hour of processing time. The 

other analyses take less than two minutes to be conducted. 

TABLE I 
ARCHITECTURE ANALYSIS TIME ON F D R2. 

Analysis done Time spent [s] 

deadlock 82 
livelock 82 

determinism 3301 

These analyses have been done on a notebook, with an AMD 

Semprom processor of 1.8 GHz with 1 GB of R AM memory. 

The code developed using RavenSPARK has been verified 

successfully using the SPARK Examiner tool. 

V. CONCLUSIONS 

In this work, the development of a software control archi­

tecture for the LAURS ROV has been approached as a safety 

critical system. The use of formal specifications for software 

development is a recommended technique in order to achieve 

software correctness. 

A new method has been proposed based on the use of the 

CSP-OZ specification language, the gCSP graphical tool, the 

FDR2 model checker of Formal Systems Ltd, the Ravenscar 

profile, the SPARK language and examiner of Altran Praxis, 

the GNAT Ada compiler of Adacore, the Workbench develop­

ment system and the V xWorks real-time operating system of 

Windriver. 

The use of model checking tool has been performed in 

two different stages of the method. First, the CSP parts of 

specifications that model concurrent aspects is checked using 

the FDR2 tool, Later, the Object-Z parts of specifications are 

converted into SPARK language annotations and then checked 

using the SPARK examiner. 

3111 



In our example, the performance of model checkers have 

been satisfactory. Further analysis, however, must be made 

for the cases of much larger systems in order to check the 

feasibility of the method. A major drawback of the model is 

that conversions from specifications into code must be done 

manually, which is an error prone approach. An important 

improvement would be the design of Design Patterns mapping 

CSP-OZ specifications into code. In this context, a software 

tool might be designed to convert specifications into code 

automatically or semi-automatically. 

ACKNOWLEDGMENT 

The authors would like to thank the Conselho Nacional 

de Desenvolvimento Cientffico e Tecnol6gico (CNPq) and the 

Coordena<;ao de Aperfei<;oamento de Nfvel Superior (CAPES) 

for the finantial support, the Formal Systems Ltd for the 

academic license of the FDR2 model checker, the Adacore 

for the academic license of the GNAT ADA compiler, the 

Altran Praxis for the academic license of the SPARK toolset, 

the Windriver for the academic license of the Workbench and 

the Vxworks real time operating system. 

REFERENCES 

[1] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. S. Fitzgerald, "Formal 
methods: Practice and experience," ACM Comput. Surv., vol. 41, no. 4, 
2009. 

[2] R. Milner, A Calculus of Communicating Systems, ser. Lecture Notes in 
Computer Science. Springer, 1980, vol. 92. 

[3] C. Hoare, Communicating Sequential Processes. Prentice-Hall, 1985. 
[4] A. W. Roscoe, C. A. R. Hoare, and R. Bird, The Theory and Practice of 

Concurrency. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1997. 
[5] c. B. Jones, Systematic software development using VDM (2. ed.), ser. 

Prentice Hall International Series in Computer Science. Prentice Hall, 
1991. 

[6] J. Woodcock and J. Davies, Using Z: specification, refinement and proof 
Prentice-Hall, 1996. 

[7] R. Duke and G. Rose, Formal object-oriented specification using object­

z, ser. cornestones of computing, R. Bird and T Hoare, Eds. Macmillan, 
2000. 

[8] C. Fischer, "CSP-OZ: a combination of Object-Z and CSP," in FMOODS 

'97: Proceedings of the IFfP TC6 WG6.i international workshop on 
Formal methods for open object-based distributed systems. London, 
UK, UK: Chapman & Hall, Ltd., 1997, pp. 423-438. 

[9] M. Oliveira, A. Cavalcanti, and J. Woodcock, "A denotational semantics 
for circus," Electr. Notes Theor. Comput. Sci., vol. 187, pp. 107-123, 
2007. 

[10] R. Alur and D. L. Dill, "A theory of timed automata," Theor. Comput. 
Sci., vol. 126, no. 2, pp. 183-235, 1994. 

[11] M. Moller, E.-R. Olderog, H. Rasch, and H. Wehrheim, "Integrating a 
formal method into a software engineering process with uml and java," 
Formal Asp. Comput., vol. 20, no. 2, pp. 161-204, 2008. 

[12] P. Chalin, J. R. Kiniry, G. T Leavens, and E. Poll, "Beyond assertions: 
Advanced specification and verification with jml and esc/java2," in 
FMCO, 2005, pp. 342-363. 

[13] M. Brorkens and M. Moller, "Jassda trace assertions, runtime checking 
the dynamic of java programs systems," in Proceedings of the interna­
tional Conference on Testing of Communicating Systems, 2002. 

[14] F. Systems, Failures-Divergence Refinement: FDR2 User Manual, june 
2005. 

[15] A. Burns and T-M. Lin, "An engineering process for the verification of 
real-time systems," Formal Asp. Comput., vol. 19, no. I, pp. 111-136, 
2007. 

[16] G. Behrmann, A. David, and K. G. Larsen, "A tutorial on uppaal," in 
SFM, 2004, pp. 200-236. 

[17] J. Barnes, High Integrity Software - The SPARK Approach to Safety and 
Security. Addison-Wesley, 2006. 

[18] S. Team, SPARK Examiner - The SPARK Ravenscar Profile, 1st ed., 
Praxis, December 2006. 

[19] C. Fischer, "Combination and Implementation of Processes and Data: 
from CSP-OZ to Java," Ph.D. dissertation, Universidade de Oldenburg, 
january 2000. 

[20] J. F. Ruiz, "Ada 2005 for Mission-Critical Systems," Adacore 

report, 2006. [Online]. Available: http://www.adacore.com/wp­
contentlupl oads/2006/02/ AdaO 5_missi on_cri ti cal. pd f 

[21] S. J. Goldsack, Ada for Specification: Possibilities and Limitations. New 
York, NY, USA: Cambridge University Press, 1985. 

[22] 1. G. Barnes, Programming in Ada, 3rd ed. Wokingham [u.a.]: Addison­
Wesley, 1989. 

[23] F. H. de Assis, "Checagem de arquiteturas de controle de vefculos 
submarinos: uma abordagem baseada em especifica�6es formais (in 
Portuguese)," Master's thesis, Escola Politecnica da Universidade de Sao 
Paulo, 2009. 

[24] D. S. Jovanovic, B. Orlic, G. K. Liet, and J. F. Broenink, 
"gCSP: A Graphical Tool for Designing CSP Systems," 
Communicating Process Architectures 2004, 2004. [Online]. Available: 
http://www.djov.netlDT/JovanovicCPA2004.pdf 

[25] C. Fischer and H. Wehrheim, "Model-Checking CSP-OZ Specifications 
with FDR," in IFM '99: Proceedings of the lst International Conference 
on Integrated Formal Methods. London, UK: Springer-Verlag, 1999, 
pp. 315-334. 

[26] G. Kassel and G. Smith, "Model Checking Object-Z Classes: Some ex­
periments with FDR," in Proc. Eighth Asia-Pacific Software Engineering 
Conference APSEC 2001,4-7 Dec. 2001, pp. 445-452. 

[27] A. Mota, A. Farias, and A. Sampaio, "De CSPz para CSPm: Uma 
ferramenta transformacional Java (in Portuguese)," in Workshop de 
Sistemas Formais. In: Workshop de Metodos Formais, 2001, pp. 1-10. 

[28] A. Burns, B. Dobbing, and T Vardanega, "Guide for the use of the 
Ada Ravenscar Profile in High Integrity Systems," Ada Lett., vol. XXIV, 
no. 2, pp. 1-74,2004. 

[29] P. Arney and B. Dobbing, "High Integrity Ravenscar," in Ada-Europe, 
2003, pp. 68-79. 

[30] D.-A. Atiya and S. King, "Extending Ravenscar with CSP Channels," 
in Ada-Europe, 2005, pp. 79-90. 

[31] Souza, E C de and Maruyama, N, "Intelligent UUV s: Some issues 
on ROV dynamic positioning," IEEE Transactions On Aerospace And 
Electronic Systems, vol. 43, no. 1, pp. 214-226, 2007. 

[32] J. Avila, J. Adamowski, N. Maruyama, F. Takase, and M. Saito, "Mod­
eling and identification of an open-frame underwater vehicle: The yaw 
motion dynamics," Journal of Intelligent & Robotic Systems, vol. 66, pp. 
37-56, 2012. 

[33] R. R. Murphy, Introduction to AI Robotics. Cambridge, MA, USA: 
MIT Press, 2000. 

3112 


