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Abstract—

The software development of control architectures for Re-
motely Operated Vehicles (ROVs) is a complex task. The use of
formal specifications for critical systems can improve both cor-
rectness and completeness of specifications and implementations.
In this work, a new method for developing control architectures
based on formal specifications is introduced. The chosen formal
specification language is the CSP-OZ, a combination of the CSP
language for behavioral model and the Object-Z language for
data model. At first, the CSP parts of specifications are verified
using the FDR2 model checker. Then, CSP-OZ model specifi-
cations are coded using the ADA language. More specifically,
the ADA language profile Ravenscar for concurrency and the
SPARK language with its annotations for data modelling are
used. The SPARK annotations give support for the Object-
Z. specifications. Later, the SPARK examiner can be used to
statically check the code against the annotations. In order to
illustrate the application of the method, the development of the
software control architecture of the LAURS ROV is introduced.
The embedded system is based on a PC104 Intel x86 running the
real time operating system Vxworks.

I. INTRODUCTION

The development of software control architectures for Re-
motely Operated Vehicles (ROVs) is a complex task. These
control architectures might be characterized by the following
attributes: real-time, multitasking, concurrency, and distributed
over communication networks. In this scenario, there are
multiple processes running in parallel, possibly distributed,
and engaging in communication between each other. In this
context, the behavioral model might lead to phenomena like
deadlocks, livelocks, race conditions, among others.

For safety critical systems, the use of formal specifications
for software development is known to improve software cor-
rectness and completeness for both specifications. This might
be achieved mainly because formal specifications establish
models that can be checked using verification tools. A recent
and extensive survey of the industrial use of formal methods
are presented in [1].

A formal method is composed by a specification language
and verification tools. The formal specification languages
are usually classified into two types: behavioural modeling
languages that describes concurrent processes and their inter-
actions, like CCS [2] and CSP [3], [4]; and data modeling
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languages, like VDM [5], Z [6] and Object-Z [7]. Some lan-
guages try to combine both aspects, these includes languages
like CSP-OZ [8] and Circus [9]. Other methods, like Timed
Automata [10], allow both behavioral modeling and reasoning
about time properties.

The model checking of formal specifications is a task of
reasoning on software system specifications, in which a tool
verifies certain properties, by means of an exhaustive search
of all possible states that a software system could enter during
its execution. In this context, it is possible to check about
correctness, liveness, deadlock, etc.

At first, some related work is reviewed. In [11] a formal
method based on CSP-OZ is integrated into a software en-
gineering process with UML and the Java programming lan-
guage. A UML profile is developed for the CSP-OZ language.
CSP models are derived from initial UML models. The Object-
Z part can be transformed into assertions in the Java Modeling
Language (JML) [12]. Jassda [13] offers trace assertions in a
CSP-like notation for specifying the required order of method
calls. The CSP part of the model design is verified using
the FDR2 model checker [14] and the JML runtime assertion
checker verifies the model implementation.

In [15] different techniques are applied that covers from
requirement analysis to code testing. The key elements are: a
restricted use of Timed Automata that uses delay and deadline
to define temporal behavior notions, notions of rely and guar-
antee to cover temporal dependencies, model checking based
on the UPPAAL verification tool [16], for design verification,
the SPARK language [17] that allows annotations and the
Ravenscar profile [18] for concurrency model, scheduling and
response time analysis for implementation compliance.

In this work, a new method for developing software control
architectures based on formal specifications is introduced. The
chosen formal specification language is the CSP-OZ language
[8], [19], a combination of the CSP language for behavioral
modelling and the Object-Z language for data modelling.

At first, the CSP parts of specifications are verified using the
FDR2 model checker [14]. Then CSP-OZ model specifications
are coded using the ADA language [20]. More specifically,
the ADA language profile Ravenscar for concurrency and
the SPARK language with its annotations for data modelling
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[21], [22], [20]. The combination of the Ravenscar profile
and the SPARK language is usually known as RavenSPARK
[18]. The SPARK annotations give support for the Object-
Z specifications. Later, the SPARK examiner can be used to
statically check the code against the annotations.

In order to illustrate the application of the method, the
development of the software control architecture of the LAURS
ROV is provided. The embedded system is based on a PC104
Intel x86 running the real time operating system Vxworks.

The paper is organized as follows. Section II details the
proposed method. Section III introduces the LAURS ROV
control architecture. Section IV highlights some results on the
application of the proposed method. Finally, section V draws
general conclusions.

1I. THE METHOD

As illustrated in figure 1, the method is composed by three
steps. The method is detailed in the following sections. More
detailed information about the method can be found in [23].

A. System modeling

1) System structure diagram: The system structure diagram
represents model components and their communication in-
teractions. The gCSP [24], a graphical tool for CSP model
editing, is used for this task. Each component represents an
independent process which might communicate with others via
synchronous unidirectional typed channels.

Channels are named according to the following pattern:

start_end:type

where the first part of the name represents the process that
sends the communication message and the second part repre-
sents the processes that receives it. After the name, the data
type used by the communication channel is declared after the
symbol ’: ’.

2) Components specification: At this stage, the objective
is to do a more detailed specification of each process that
composes the system, including its internal data structure and
dynamic behaviour. For that, the formal specification language
CSP-OZ [8], [19], a combination of the process algebra CSP
with Object-Z (an object-oriented extension of Z). In CSP-OZ,
processes are described as classes (Class) that have two parts:
a CSP part and an Object-Z, part.

The CSP part contains the specification of the process
communication interface together with the process dynamic
behaviour. The interface includes declarations of all channels
used by the process, and declarations of the methods described
in the Object-Z part. When using the CSP-OZ language,
Object-Z methods are interpreted as internal events of the CSP
process. The difference between a channel and a method in the
interface is detached through the use of the reserved words “
chan”, for channels, and “ method”.

The main part, indicated by the reserved word “main”,
contains all events that a process might accept, including
calls on communication channels and internal methods. So, an
example of specification of a basic behaviour that cyclically
executes two methods might be:

main = doSomething — doOtherThing —
main

The Object-Z part consists of specification of the internal data
structure including its associated methods. Internal variables
with their initial values and internal methods must be declared.
Methods associated with communication channels must be
identified using the prefix “ com.” plus the name of the
channel. For a channel named theChannel there must exist
a method named com_theChannel in both process related with
the channel.

A general class C might be represented by the following
schema:

C

1 [Interface]
P [CSP Part]
z [OZ Part]

which can be written horizontally as specs I P Z end.
In the Interface I, channels and types are declared. P is a
CSP process and Z is an abstract data type specification using
Object-Z and is defined by:

Z

st : State

Init(st)

...com_c(st,in?, out!,st') ...
[one schema for each cin ]

[State Space]
[Initial Condition]

3) Model checking: The graphical tool gCSP exports the
structure model into CSPy language, which is the language
of FDR2 model checking tool [14]. The CSPy language is an
extension of CSP [25]. While using FDR?2 it is possible to ver-
ify issues like deadlock, liveness, determinism and refinement
relationships. There are works [25], [26], [27] that try to check
the Object-Z part of CSP-OZ models together with the CSP
part using data structures provided by the CSPy; language. In
this work, only the CSP part is checked using the FDR2 tool.

B. Model implementation

In this project, the Ada programming language is adopted
[20]. The use of ADA is quite widespread in the development
of software for critical systems. Among the advantages of its
use are its high legibility, real time programming facilities,
strong typing and existence of profiles and language subsets
for critical systems, like the Ravenscar profile and the SPARK
language [21], [22], [20]. The use of SPARK language together
with the Ravenscar profile is also known as RavenSPARK
[18], which consists on the use of the SPARK language
for sequential code constructs and the Ravenscar profile for
concurrent programming.

1) Code generation: In this work, the generation of code
is done manually.

The SPARK language and the Ravenscar profile impose
restrictions related to the use of the Ada language constructs
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[18], [28], [29]. In this work, the following issues are of
interest:

o Use of dynamic allocation, pointers and generic types are
prohibited;

o Communication between tasks are restricted to protected
or atomic objects;

o Use of select, abort and relative delays inside tasks are
prohibited;

Taking into account these restrictions, a set of implemen-
tation rules have been elaborated in order to convert CSP-OZ
specifications into RavenSPARK. The creation of processes
and channels are of special interest. Package encapsulation,
tasks, protected objects and strong typing are the utilised
concepts.

The creation rules of processes are:

o Each process is created as a separate package, that
contains internal methods and an Ada task, that acts as
the actual CSP process. This has the same name of the
package plus the suffix “ _task ”.

o The internal methods of each process are created inside
the package, and not inside the task. This facilitates
verifications with the SPARK examiner and also reduces
size and complexity of the task internal code.

o The internal variables of the processes are located inside
the task, and not in the package. They are encapsulated
inside the task, and cannot be accessed directly by other
tasks in the same way that occurs in the CSP language.

o All processes execute in infinite loop. This is due to
the Ravenscar profile that states that task termination is
considered as a program error.

For the CSP channels, their implementation using
RavenSPARK has been developed based on [30]. The
RavenSPARK channels are composed by two protected ob-
jects: Data that stores the transmitted data through the channel

SYSTEM MODELING

and blocks the receiver process; and Sync, that blocks the
sender process until that the data is received by the other
process. Based on that, the following implementation rules for
the CSP channels in RavenSPARK are established:

e Each channel type demands a different package. By
convention, the package receives the channel type as part
of its own name. For example, if the channel is of the
type integer than the correspondent package type is Inte-
gerChannel. If the channel is of the type message than the
correspondent package is of the type MessageChannel,
and so on.

o The internal data stored in the protected object Data has
the same type of the channel.

o Each channel that is presented in the gCSP diagram
should be created inside the package that represents its
channel type. In this way, all channels that have the same
type are created together inside the same package. This is
due to restrictions imposed by the RavenSPARK profile

o The name of the channel instances obeys the following
rule: the prefix is the same name present in the gCSP
diagram, and the suffix differs for the two components of
the channel: “ _d ” for the object of type Data and “ _s
” for the object of type Sync. For instance, for an integer
channel whose name is myChannel in the gCSP diagram,
its RavenSPARK implementation will consist on the cre-
ation of two objects : myChannel_d and myChannel_s,
both created inside the package IntegerChannel.

o The message sending and receiving are realised via the
methods put, get, stay and proceed. It works in the
following way:

— Inside the task who is transmiting the data someData,
the code for using the channel would be, for example:

Structure Components Model
Diagram : Specification : Checking
MODEL IMPLEMENTATION
Code SPARK Implementation
Generation ’ Annotations ’ Checking
TESTS

Fig. 1.

The proposed method.
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IntegerChannel . myChannel_d . put(someData); —
send the data

IntegerChannel . myChannel_s. stay ; —
wait for the reading

— Inside the task that is receiving the data myData, the
code for using the channel would be, for example:

IntegerChannel . myChannel_d. get (myData) ; —
read the data

IntegerChannel . myChannel_s . proceed ; .
release the sender

2) SPARK annotations: Annotations are inserted inside the
code as ADA comments which begins with symbols “—#”. The
piece of code shown above illustrates an example of these
annotations for the Add procedure. The types of annotations
include pre-conditions, post-conditions and invariants of vari-
ables and methods, priorities for tasks and protected objects,
and specifications on the use of variables (reading or writing)
along the program. More detailed information might be found
in [17] and [18].

procedure Add(X: in Integer);
—+# global in out Total;

—+# derives Total from X;
—# pre X > 0;

—# post Total = Total ™ + X;

Object-7Z part specifications can be easily mapped onto
SPARK annotations.

3) Implementation checking: Based on the inserted SPARK
annotations, the SPARK examiner is capable of performing
static verifications:

o Check the compliance between the implementation code
and the SPARK language rules;

o Check the consistency between the implementation code
and its annotations, being able to perform data flow
analysis, control flow analysis or generate verification
conditions.

C. Tests

After the modelling and implementation phases together
with their respective checking procedures have been per-
formed, tests are made inside the simulation environment of the
Windrivers Workbench development system. The simulation
environment emulates an Intel x86 embedded system architec-
ture running the real time operating system Vxworks. Later,
tests are conducted in the real hardware which is an Intel x86
PC104 system.

III. THE LAURS CONTROL ARCHITECTURE

Unmanned underwater vehicles (UUVs) are usually clas-
sified into two categories: the first one is named remotely
operated vehicles (ROVs). They are connected to a remote
station (usually inside a vessel) and require direct human
assistance for all operations, for example, vehicle guidance,
positioning, manipulator operation, etc. The second one is
known as autonomous underwater vehicles (AUVs) and are

Fig. 2. The LAURS ROV.

characterised by autonomous behaviour and absence of a tether
cable [31].

A holonomic semi-autonomous UUV, named LAURS [32],
is being developed at the Laboratory of Sensors Actuators at
the University of Sao Paulo. The LAURS has been conceived
as having semi-autonomous behaviour, i.e., the vehicle are
remotely operated but have also an autonomous mode that
can be used to approach the target. Despite the possibility of
having an autonomous behaviour, the vehicle is mostly a ROV
due to is operation characteristics and mechanical design. The
vehicle has been initially conceived to provide inspection and
intervention capabilities in specific missions in deep water oil
fields.

The vehicle configuration is composed of an aluminum
tubular structure, [ = 14m x w = 12m x h = 0.9m,
equipped with three pressure vessels of the same dimensions,
I =1.0m x d = 0.167m. Its weight in air is about 200Kg and
the weight-buoyancy force is 35N positive. For description
convenience, the LAURS is divided into two parts: upper
and bottom. The upper part of the vehicle contains a layer
of PVC tubes for buoyancy properties, a pressure vessel
for the electronics and sensors, and four horizontal thrusters
(see figure 2). The bottom part of the vehicle consists of
two pressure vessels that contain batteries and four vertical
thrusters. Modular structural components allows that LAURS
can be easily reconfigured in agreement with specific tasks.
The overall structure of the vehicle is symmetric with respect
to both the xz and yz planes, and the eight thrusters are
arranged two by two in the corners, with the horizontal ones
parallel to the diagonals of the xy plane. This particular thruster
configuration enables the full controllability of the vehicle
motion.

The development of the architecture follows the hybrid
paradigm [33]. Two functional layers (See figure 3) are iden-
tified: a deliberative layer, responsible for mission planning
activities, and a reactive layer, responsible for sensorial and
motion control activities.

Processes, that are independent pieces of software, are
represented by rectangles. Interactions between processes oc-
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Reactive Layer

avoid_move:STATUS
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sensor_haseWriter MESSAGE
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Sonar

L] move_s2:ControlData
Move

stop_s2:ControlData

actuator_thruster:ActuationData

s2_actuator:ControlData

Actuator

ThrusterWriter

Fig. 3.

cur via unidirectional synchronous communication channels,
represented by arrows. Channel names are chosen to indi-
cate the message flow direction together with its data type:
start_end:type. The processes Compass, Altimeter and Sonar
do not possess any communication channels. Readings of their
associated sensors are stored on a data structure named Black-
Board that serve as an asynchronous exchange of information.

IV. EXPERIMENTAL RESULTS

The CSPy script generated based on the CSP-OZ model
is checked in FDR2 for concurrency issues like deadlocks,
livelocks and determinism. These tests must be conducted for
the complete system, i.e. considering all modules and their
interactions.

The process named ROV_Control_Module (which represents
the whole system) is tested successfully regarding the existence
of deadlocks, livelocks and determinism. It is important to
emphasize that the system under analysis is of considerable
size, which indicates that the proposed modeling method
allows that larger systems can be analyzed. According to
the output report obtained from the tool, the system has the
following complexity:

e Number of States: 2,519,424
e Number of Transitions: 23,549,616

It is observed that the number of system states is quite
large, which makes impossible to conduct a manual analysis
of its state machine. Even with large number of states, as
can be observed in table I, the time spent with the analyses
is relatively short. The analysis of determinism is the largest
one, taking a little less than one hour of processing time. The
other analyses take less than two minutes to be conducted.

The LAURS control architecture: processes and channels.

TABLE I
ARCHITECTURE ANALYSIS TIME ON FDR2.

Analysis done | Time spent [s]
deadlock 82
livelock 82

determinism 3301

These analyses have been done on a notebook, with an AMD
Semprom processor of 1.8 GHz with 1 GB of RAM memory.

The code developed using RavenSPARK has been verified
successfully using the SPARK Examiner tool.

V. CONCLUSIONS

In this work, the development of a software control archi-
tecture for the LAURS ROV has been approached as a safety
critical system. The use of formal specifications for software
development is a recommended technique in order to achieve
software correctness.

A new method has been proposed based on the use of the
CSP-0Z specification language, the gCSP graphical tool, the
FDR2 model checker of Formal Systems Ltd, the Ravenscar
profile, the SPARK language and examiner of Altran Praxis,
the GNAT Ada compiler of Adacore, the Workbench develop-
ment system and the VxWorks real-time operating system of
Windriver.

The use of model checking tool has been performed in
two different stages of the method. First, the CSP parts of
specifications that model concurrent aspects is checked using
the FDR2 tool, Later, the Object-Z parts of specifications are
converted into SPARK language annotations and then checked
using the SPARK examiner.
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In our example, the performance of model checkers have
been satisfactory. Further analysis, however, must be made
for the cases of much larger systems in order to check the
feasibility of the method. A major drawback of the model is
that conversions from specifications into code must be done
manually, which is an error prone approach. An important
improvement would be the design of Design Patterns mapping
CSP-OZ specifications into code. In this context, a software
tool might be designed to convert specifications into code
automatically or semi-automatically.
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